EN
中文
注册 / 登录
产品分类:
加载中...
头条分类:
加载中...
全球首次月球背面采样!嫦娥六号成功着陆太阳系已知最古老撞击盆地
央视新闻消息,今天(6月2日),嫦娥六号探测器着上组合体成功着陆月背南极-艾特肯盆地的预选着陆区。 嫦娥六号任务将沿用嫦娥五号的采集方式,使用钻取和表取两种采样方式,获得不同层面和深度的样品,并在月球背面同步开展科学探测。 5月3日,嫦娥六号发射任务圆满成功,开启世界首次月球背面采样返回之旅,预选着陆和采样区为月球背面南极-艾特肯盆地。 5月8日,嫦娥六号探测器成功实施近月制动,顺利进入环月轨道飞行。 据央视新闻此前消息,月球背面的南极-艾特肯盆地是太阳系已知最古老的撞击盆地。月球背面就是月球背对地球的那一面。由于月球公转和自转时间同步,这就导致月球的一个面永远无法面向地球。 中国航天科技集团 逯运通:全球进行过10数次的采样返回,全部都是在月球的正面,月球背面可能存在更古老的月壤,在月球背面不论采回什么样的月壤,科学价值都是比较高的。 嫦娥六号探测器由轨道器、返回器、着陆器、上升器组成。后续,在地面测控和鹊桥二号中继星支持下,嫦娥六号探测器将历经地月转移、近月制动、环月飞行、着陆下降、月面软着陆等过程,在月球背面预选区域采集月表岩石和月壤样品,同时开展科学探测。完成采样封装后,上升器将在月面起飞,随后开展月球轨道交会对接并将样品转移至返回器;返回器将经历月地转移、接近第二宇宙速度再入地球等过程,最终携带珍贵的月球样品返回地球。 据介绍,嫦娥六号任务发射至采样返回全过程约53天,任务周期长,工程创新多,风险高,难度大,每个阶段环环相扣。相比2020年实现月球正面采样返回的嫦娥五号任务,嫦娥六号任务需在鹊桥二号中继星的支持下,实施首次月球背面采样返回,突破月球逆行轨道设计与控制、月背智能快速采样、月背起飞上升等关键技术。同时,嫦娥六号任务将开展月球背面着陆区的现场调查分析,月球样品实验室分析研究等科学探测,深化月球成因和演化历史的研究。 为顺利带回月球背面的样品,科研人员为嫦娥六号设计了11个阶段的飞行任务。 发射入轨段 地月转移段 近月制动段 环月飞行段 着陆下降段 月面工作段 月面上升段 交会对接与样品转移段 环月等待段 月地转移段 再入回收段 编辑|王月龙 易启江 校对|刘思琦 每日经济新闻综合自央视新闻 每日经济新闻
第一批小米车主:我给雷军这些建议
文| 王文彤 任娅斐 编辑|马吉英 头图来源|视觉中国 一个月之前,林锐(化名)从没想过他会跟“难产”扯上关系。在小米汽车APP显示的32~36周里,除了等待,他什么都做不了。 “锁单一个月,一丁点消息都没有,买个车够闹心的,400电话也只会干巴巴地安慰人。这橄榄绿Max就这么难产吗?” 他口中的“橄榄绿Max”,就是小米汽车SU7 Max版。除了50万以内“最好看、最好开、最智能”,它还是新品牌首车上市首月交付量最高、交付破万速度最快的车。 “我这辈子最好的耐心给了小米。” 林锐在社交媒体上记录下自己的心情,引来一片共鸣。 吴清(化名)在3月底的小米汽车发布会当晚,下单一台雅灰色的SU7 Pro Max。“我完全是出于对雷军的信任,把我的第一辆车献给小米。”但是等到现在,他的车还只是APP里的一张图片。 在6月1日的一次活动上,雷军同步了小米SU7的交付进度。他表示,小米汽车5月份交付新车8630台。6月,小米汽车工厂开双班,6月目标是单月交付10000台以上。“过去两个月,我们真的忙得焦头烂额。”雷军说。他还承诺,“2024年保底交付10万台,冲刺交付12万台!” 来源:雷军小红书截图 除了交付周期慢,试驾也是“一车难求”。李桐(化名)吐槽到,他的试驾体验是“预约三五天,试驾两分钟,同时有五个人坐在车上”。 根据对多名小米车主的调查,近半数车主在下单前没有看过小米实车,属于盲定。因此部分车主对实车颜色不太满意,如果可以重新选择,他们表示会更换颜色。排在前三位的下单原因是认可小米、外观好看、操作性能强。多数车主此前用过小米其他产品,或在买车后有尝试小米产品的打算。不少车主也对小米即将推出的SUV车型满怀期待。“如果这辆车开的好,小米出SUV我也买。”李桐说。 在或长或短的等待期后,提到车的小米车主们感受不一。他们既体会到“尝鲜”的乐趣,又为各种质量问题所扰。这些问题包括但不限于倒车雷达失灵、翼子板脱落、多次爆胎等。 从小米发布的用户画像来看,他们的群体特征是,BBA用户购买者约占三成、预计女性用户超过四成,苹果用户占比超过一半。在《中国企业家》联系的小米车主中,有的仍然在焦急地等待,每天“住在”小米APP里,期待着交付日期能够提前;有的已经开上实车,逐渐习惯接受路人的注目礼。 小米汽车是如何成为这些车主的购车首选?他们在购车和使用过程中遇到了哪些问题?在这些问题背后,小米汽车能否快速走出“产能地狱”、迎来销量爆发? 我们与四位小米汽车车主聊了聊他们买车的故事,以及他们对小米品牌的看法、对雷军的建议。 24岁,无锡,金融行业从业者: 太智能也是问题 第一眼看到我的车,有点失望,有点“照骗”。发布会上和APP照片里小米的蓝色是很亮很浅的浅蓝色,没有想到我的车是很深的蓝色,深到晚上开出去会被人误以为是绿色。 3月份开始我有买车的打算,在懂车帝上做了一两个月功课后,我本打算看看比亚迪3月26日的发布会,发现小米也要在3月28日开发布会,就想着两个对比一下。看完小米的发布会之后我很激动,当天晚上就决定下单,第二天中午锁单。 小米打动我的地方一是外形很漂亮,二是续航能力,标准版的续航有700公里。 一开始小米并没有公布价格,一直卖关子说是50万以内无敌手,而我的预算是二十万左右。等到小米报价,我发现竟然只要21.59万,一下就心动了。另外,它的冰箱我很喜欢,夏天出游可以冰东西很方便,防晒也做得很好,内饰也有很多挂钩,各方面都很贴心。 一直等到提车前一天我才去试驾。当时网上有人说小米的空间很小,我还有点担心,坐进去之后发现根本不是网上说的那样,空间很宽敞,能放很多东西。我身高1米6,我男友身高185,他坐在后排也比较宽敞。 我是新手,试驾的时候有点害怕出事故,但我男朋友试驾之后非常兴奋,脸都红扑扑的,他觉得电车开起来比那些油车要舒服很多。 在小米还没有出来之前,他是特斯拉的忠实粉丝,试驾小米后他很心动,嚷嚷着要买个小米。一是他觉得小米很舒适、智能,二是跟小米比起来,特斯拉有点像“毛坯房”,在装饰上面很简单,没有小米那种的氛围灯和按键。 APP显示要等8~11周,也就是说我最早要等到5月底6月初才能开上,我还催了几次想快点拿到车五月底出去玩,没想到没等多久就跟我说车已经准备好,从北京运到无锡也只用了一两天,5月上旬就收到了。 提车我本来以为不会有什么仪式。我去提车那天朋友还担心没有什么仪式感,给我定了一束花。没有想到现场的提车仪式有鲜花、装饰品和小零食,因为颜色产生的小小失望瞬间烟消云散了。销售姐姐还帮我拍照片,怕我不满意还帮我P图。 一个男同事看到我开小米之后比较激动,正好我们的工作需要出外勤,我就让他试驾一下。他是一辆40来万奥迪车的车主,车刚开了一年多,试驾的时候他很夸张,一直在说,“我那个车都是老古董了,你是现代人,我是原始人。” 但是,也许是我对小米的预期太高了,这辆车刚提一周就发生三起剐蹭事故,这点没有达到我的预期。我以为它的雷达是360度无死角的,但其实是有死角的。 第一次,我从停车场开出来的时候,我正很小心地往前慢慢挪,但雷达没有提示,右后门被蹭,门也凹进去了,打开右后车门后我发现踏板也被蹭得凹进去了,我非常心疼。 第二次,我在上高架,明明跟车距离很合适,但是可能后车开得比较快,快要接近我车屁股的时候,我的车突然间一提速;或者我跟前面车靠得有些近,车也会突然急刹一下,吓我一跳。太智能也是它的问题。 第三次,我在室外停车场停车时,后面有一个类似消防栓的比较矮的东西,倒车影像里完全没有提示,车屁股迎面就撞上去了,一声巨响。 出事故确实是我车技不好,我挺喜欢这辆车,但是小米确实应该优化一下雷达的问题。 如果再选一次,我想换个颜色。之前我从来没有买过小米的产品,SU7作为我的小米尝鲜。满分按照十分的话,我可以给到8分。买车并不后悔。 27岁,广东,制造业从业者: 我给雷军的三点建议 电车对我来说相当于一个大玩具。 看发布会之前,我对小米汽车没什么了解。身边很多朋友在开特斯拉,而我自己之前开的是一辆宝马6系的油车。 我也看过好几个新能源汽车品牌,比如问界、蔚来、理想、特斯拉、极氪等,但是比来比去,没有哪一款特别心仪,纠结一个多月刚好看到小米发布会。 小米汽车比较吸引我的地方,一是外观比较时尚,二是运动感和性能比较好,三是小米对苹果系统的兼容性更好,发布会的时候他们也强调了这一点。四是收纳空间很多。宝马6系这种轿跑有一个很明显的缺点是收纳空间不足,车里看着很乱,我又是处女座,喜欢整洁一点。五是续航能力更好。我之前有考虑过蔚来,它也比较好看,但是听蔚来的车主说续航有点短,所以没有选择。 发布会上最打动我的地方是小米把自己跟特斯拉Model 3进行了详细对比,感觉好像很多地方都做得比Model 3好,性价比更高,一下激起我的购买欲。 来源:视觉中国 决定要买之后,我想早点提车,又抢不到,就跟二手车行联系加价10%买了创始版的Max,半个月之后也就是4月中旬提的车。 我是做制造业的,职业要求我选车不能太花里胡哨,但是我年纪又不大,像总裁车、行政车对我来说太成熟,我还是喜欢轿跑。 本来父母和朋友给我的建议都是选择一台SUV,轿跑在他们看来华而不实。带着他们开车出去玩之后,他们也觉得小米空间很宽敞,好看也好用。如果小米出一台SUV的话,我可能就把这台车卖掉,换一台小米SUV。 这辆车我主要是通勤在开,出远门之前我一定会做两件事:充好电、检查轮胎。之前开那么多年车,我只爆过一两次胎,但是我开小米一个月就爆了两次胎。 第一次爆胎的时候我还想,以前我的车胎都是防爆的,可能不防爆的胎就是这样,是我运气不好,没想到这么快就有第二次爆胎。后面我可能会考虑换成防爆轮胎,轿跑这么容易爆胎还是挺危险的。 除了车胎之外,这辆车还出现几个问题。一是前翼子板脱落,之前大家都反映类似的问题,我的车也出现同样的问题之后,我只觉得“轮到我了”。 我找到小米的售后,他们说是因为我高速涉水才让前翼子板脱落。我提完车之后广州一直下暴雨,涉水肯定是有的,但是我在广东开这么多年车,看到有水一直都是减速开过去的。小米的回复实在太官方,而且有没有高速根本说不清。不过这不是大的安全问题,我也就没有去深究。 二是车子开动时,我发现右后排有电流“滋滋啦啦”的异响。小米只说是线没接好,我也没深究,但是出现接线问题对一家制造企业来说是挺低级的错误,我没办法理解。 三是左前方轮胎挡泥板的两颗螺丝断裂,这是第二次爆胎之后我去补胎时才发现的。 其实我在买创始版之前已经做好心理准备,知道它不可能百分百完美。 在我心里,只要一台车的智驾和安全性能不出问题,其他小打小闹的毛病我都能接受。而且我们作为创始版的车主,发现小问题及时反馈给小米,后面的车主不出现同样的问题就行。这些小缺点不影响我对这台车的评价,我没有后悔买车。 如果给雷军提三点建议的话,一是智驾系统还有待提升,小米的智驾开起来跟特斯拉比真的差太远,差到我不太敢用的程度。二是一些无伤大雅的小问题希望能完善一下,比如高速涉水和音响的问题。三是产能,如果产能跟得上,我作为首批车主也不至于要加钱去买。等两个多月都还行,等半年以上就有点太夸张。 如果重来一次,我可能会换一个颜色,比如蓝色、紫色,紫色听上去很扎眼,但看到实物之后觉得还好。 小米给我的印象一直是性价比很高,它是一家有实力的企业,而且花这么多心思去造一辆车,我还是愿意相信它的。 买车之后我觉得雷军挺符合我印象中制造企业老大的形象的,因为他做的所有产品都是以制造为基础,很有性价比。小米如何营销是商业行为,最重要的是要做出实实在在、有性价比的产品,而不是把营销的费用分摊在产品上,降低产品的性价比,那就与我们消费者选择小米的原因背道而驰,也背离了他的初心。抛弃初心的企业,最终也会被抛弃。 25岁,上海,金融行业从业者: “有个声音告诉我,你一定要来” 5月17日,整个上海只有五位幸运车主跟雷军合影了,我就是其中之一。 本来我想在18号提车,但是小米提前几天跟我说17号有一个活动,希望我能参加。一开始我挺犹豫的,因为17号是周五,我得跟老板请假过来。但是冥冥之中有个声音告诉我,“你一定要来”。考虑之后,我还是决定换到17号提车。 3月底发布会之前,我都不知道小米有汽车,偶然刷到雷军在抖音上直播,觉得小米汽车外形挺漂亮的,智驾功能也不错。最打动我的是雷军的一句话:“这车是50万之内最好的轿跑。”当天晚上我就下单SU7标准版,第二天锁单。 本来我想买油车,五十万以内的预算,我先对比了奔驰A、奔驰C,加上牌照和后续的油费感觉有点贵。后来我发现路上充电桩还是挺多的,今后电车肯定是大势所趋,就动了想买电车的心。看过蔚来、小米和理想后,我还是最喜欢小米的外形,在大街上特别打眼。 颜色方面,我选了款比较百搭、耐脏的灰色,我开几年之后,我爸也能开。他是十几年的老司机,总觉得去外地的话油车会方便一些,我下单当天他特别反对。但我是属于冲动下单,又是自己全额付款、先斩后奏,他也没来得及说什么。 之前我并没有买过小米的东西,其实很多东西我都不太了解。比如小米7kw的充电桩价格是3999元,而我对充电桩的心里价位是3000元。身边开油车的朋友告诉我,加油费大约是一公里一块钱,如果我第一年开不到4000公里,开小米汽车是亏钱的。 比如,朋友跟我说小米汽车的保费比一些油车还高。他们本来劝我先观望一段时间,觉得小米汽车刚出来,可能会存在功能和质量问题,犯不着当小白鼠。但是我当时已经锁单了,定金没法退,既来之则安之吧。 锁单第二天我跟我爸去店里试驾,第一眼看到车我挺惊讶的,它和我想象的不太一样,颜色也没有图片上漂亮。 我想象中的轿跑是比较娇小的,但是小米汽车非常宽,空间也大,我担心像我这种身材小巧的女生驾驭不了它。再加上还是有点担心电车续航、充电以及安全问题,稍微有点犹豫。 来源:视觉中国 我爸的态度反而有些改观。他算是一个蛮挑剔的人,但是觉得小米汽车轮毂、外观都蛮大气的。 坐到车里之后,我和我爸两个人都不敢开。我是新手,他之前一直开手动挡,就只是坐到车里感受一下。第一感觉是车的空间真的很大,我爸平时开一辆7座的江铃全顺客车,当时我们用尺量了一下,发现车的宽度跟江铃全顺差不多。第二感觉是电门特别灵敏,我还专门调了一下让电门不那么灵敏,好让我这个新手也能开。 APP显示我的交车时间是8~11周。就在我每天翻着APP望眼欲穿的时候,突然有一天小米给我打电话说车已经提前到店,我想,这车跟我真有缘。 我朋友买了小米汽车的Max版,显示发货时间是30周左右,要一直等到年底,他就等得很烦,还跟我说要不干脆把这个车退了得了。 小米的保密工作做得特别好,我是前一天才知道雷军会过来参加交付仪式。 交付仪式从下午一点开始,我和我爸十一点半到的,当时雷军的摄影团队也在,现场有很多跟拍人员,花团锦簇的,还给我们准备麦当劳的汉堡当午饭。我激动得有点吃不下去。 整个流程大概半小时。车主们分别跟雷军握手、合影,然后大家再一起合影留念。雷军比较瘦,个子很高,看起来很有亲和力,握手的时候非常客气,一直在说谢谢。 小米是我、也是我们全家的第一辆车。开下来我感觉自动泊车很灵敏,比我自己泊车快很多。另外,车顶的材料确实很防晒,但是前挡风玻璃防晒力有点不够,太阳很大的话还是需要涂防晒霜,或者戴遮阳帽、墨镜。 可能是我的技术问题,再加上这个车有点宽,过比较窄的道路我总担心侧面会刮到,好在没有出现过什么问题。有时候我在路上想用智驾功能,我爸就不让我用,他觉得把生命交给机器人不太放心。 满分十分的话,我会给这个车打9分。一分扣在充电桩的价格比较贵,还有车上的一些配件都要花钱购买。 如果能提几条建议,一是希望智驾功能更安全一些,二是希望之后可以出定价30万以内的SUV。再选一次的话,我可能会换紫色,当时没想到紫色一下就火了。 我在金融行业工作,对雷军很敬佩。尤其是看到他在发布会上鞠了一躬,感觉有点心酸。他已经是很成功的企业家,决定重新进入一个新的领域,慢慢赢得大家的认可,并不是一件容易的事。 至少凭这辆车,小米赢得了我的认可。 47岁,东莞,金融行业从业者: 雷军是个牛人,我要支持他 雷军宣布造车的那一刻,听到他说“也是我人生最后一次重大创业项目。我愿意押上我人生全部的声誉,再次披挂上阵,为小米汽车而战!”,我决定闭眼入,必须支持一下雷军。 我崇拜他。之前看过他写的创业书籍,感觉他是个很有能力的人。我也相信他,相信小米做车是坚持用自己的价值观做认定的事。小米成立那么长时间,七个字“专注,极致,口碑,快”深入人心。 雷军在小米SU7发布会现场。摄影:赵东山 3月28日晚上下单标准版,颜色选了雅灰色。本来是想抢创始版的,但是我按错了键买成标准版,有点遗憾。如果再来一次,我要冲创始版,这样交车更快,最好发布会第二天就能拿到车。 我之前开过雪佛兰、大众的油车,也开过朋友的豪车。传统的车企就像以前手机界的诺基亚,蔚来、小鹏、理想、小米、华为就像智能手机,诺基亚在智能方面跟不上,迟早会没落。 如果智驾水平差不多,我会倾向于价值观宣传得更到位的车企。 蔚来、小鹏、理想的价值观我都不知道,小米和华为相比的话,小米的“人、车、家”布局很清晰,我觉得它的优势会越来越明显。 还记得雷军在发布会上说,别人问他同一个员工在别的车企时没那么有干劲,到小米却干劲十足,是不是吃了什么灵丹妙药?雷军回答就是:“我给了他们小米的价值观。”这句话给我留下很深的印象。 发布会第二天,早上九点多,我就去试驾了Max版。小米汽车整体上符合我的预期,甚至有些地方超预期。 当时交付专员给我看照片的时候,我觉得颜色有点偏白,实际看车的时候觉得蛮不错。 APP上显示要等4~6周。提车到现在一个多月,最大的感受是这车的防晒确实比我之前的好。之前坐在我的雪佛兰里,太阳一晒,整个车里都火辣辣的。 车本身的新鲜感确实在慢慢衰退,但是我很期待OTA的更新,每次更新我就又有了新鲜感。没想到提车第二天,导航的位置就不更新了。我立刻反馈给售后,售后承认了问题,但是没有明确告诉我什么时候能修好。在我的再三追问之下,他告诉我要等到五月中旬。 于是我跑到雷军的微博底下评论,他之前回复过我的评论,希望这次他也能看到。后面小米北京的工程师给我打了电话,告诉我OTA更新之后就可以解决,但是并没有。 第二天我又反馈给他们,他们先安排了上门处理,还是也不行,我又把车开到门店,当天他们重新做了校准,终于处理好导航的问题。 十分满分的话,我可以打8~9分。扣分在导航上,这是个小问题,但我会不由地担心其他智驾方面的问题,这是人之常情。 我想告诉雷军,希望他在智驾方面做得更好,不止全球前5,最好能做到前3或者前2。如果能给雷军提几条建议,一是希望他在全视觉版智能驾驶方面超越特斯拉,二是希望他能一直坚持小米的价值观,坚持把硬件综合净利率控制在5%。
英伟达CEO黄仁勋COMPUTEX2024演讲1.6万字全程实录,我们正在经历计算通货膨胀
6 月 2 日晚,英伟达 CEO 黄仁勋在台北 ComputeX 2024 大会上展示了英伟达在 加速计算和生成式AI领域的最新成果,还描绘了未来计算和机器人技术的发展蓝图。 这场演讲涵盖了从 AI 基础技术到未来机器人和生成式 AI 在各个行业的应用,全面展示了英伟达在推动计算技术变革方面的卓越成就。 黄仁勋表示,英伟达位于计算机图形、模拟和 AI 的交汇处,这是英伟达的灵魂。今天展示给我们的一切都是模拟的,它是数学、科学、计算机科学、令人惊叹的计算机架构的结合。这些都不是动画,而是自制的,英伟达把它全部融入了 Omniverse 虚拟世界。 ▍加速计算与 AI 黄仁勋表示,我们所看到的一切的基础是两项基本技术,加速计算和在 Omniverse 内部运行的AI,这两股计算的基本力量,将重新塑造计算机行业。计算机行业已有 60 年的历史。在很多方面,今天所做的一切都是在 1964 年黄仁勋出生后一年发明的。 IBM System 360 引入了中央处理单元、通用计算、通过操作系统实现硬件和软件的分离、多任务处理、IO子系统、DMA以及今天使用的各种技术。架构兼容性、向后兼容性、系列兼容性,所有今天对计算机了解的东西,大部分在1964 年就已经描述出来了。当然,PC 革命使计算民主化,把它放在了每个人的手中和家中。 2007 年,iPhone 引入了移动计算,把计算机放进了我们的口袋。从那时起,一切都在连接并随时运行通过移动云。这 60 年来,我们只见证了两三次,确实不多,其实就两三次,主要的技术变革,计算的两三次构造转变,而我们即将再次见证这一切的发生。 有两件基本的事情正在发生。首先是处理器,即计算机行业运行的引擎,中央处理单元的性能提升显著放缓。然而,我们需要进行的计算量仍然在迅速增长,呈指数级增长。如果处理需求,数据需要处理的量继续指数级增长但性能没有,计算通货膨胀将会发生。事实上,现在就看到了这一点。全球数据中心使用的电力量正在大幅增长。计算成本也在增长。我们正在经历计算通货膨胀。 当然,这种情况不能继续下去。数据量将继续以指数级增长,而 CPU 性能提升将永远不会恢复。我们有更好的方法。近二十年来,英伟达一直在研究加速计算。CUDA 增强了 CPU,卸载并加速了专用处理器可以更好完成的工作。事实上,性能非常出色,现在很明显,随着 CPU 性能提升放缓并最终显著停止,应该加速一切。 黄仁勋预测,所有需要大量处理的应用程序都会被加速,当然每个数据中心在不久的将来都会被加速。现在加速计算是非常合理的。如果你看看一个应用程序,这里100t 代表 100 单位时间,它可能是100秒,也可能是 100 小时。在很多情况下,如你所知,现在正在研究运行 100 天的 AI 应用程序。 1T 代码是指需要顺序处理的代码,其中单线程CPU是非常关键的。操作系统控制逻辑非常重要,需要一条指令接着一条指令地执行。然而,有很多算法,比如计算机图形处理,可以完全并行操作。计算机图形处理、图像处理、物理模拟、组合优化、图处理、数据库处理,当然还有深度学习中非常著名的线性代数,这些算法都非常适合通过并行处理来加速。 因此,发明了一种架构,通过在 CPU 上添加 GPU 来实现。专用处理器可以将耗时很长的任务加速到极快的速度。因为这两个处理器可以并肩工作,它们都是自主的,独立的,可以将原本需要 100 个时间单位的任务加速到 1 个时间单位,速度的提升是难以置信的,效果非常显著,速度提升了 100 倍,但功耗只增加了大约三倍,成本只增加了约 50%。在 PC 行业一直这样做,英伟达在1000 美元 PC 上加一个 500 美元 GeForce GPU,性能会大幅提升。英伟达在数据中心也这样做,一个价值十亿美元的数据中心,加上 5 亿美元的GPU,突然间它就变成了一个 AI 工厂,这种情况正在全球各地发生。 节省的成本非常惊人。每花一美元就能获得 60 倍的性能提升,速度提升了 100倍,而功耗只增加了三倍,成本只增加了 1.5倍。这种节省是难以置信的。节省的成本可以用美元来衡量。 很明显,许多公司在云端处理数据上花费了数亿美元。如果这些过程被加速,不难想象可以节省数亿美元。这是因为在通用计算上已经经历了很长时间的通货膨胀。 现在终于决定加速计算,有大量被捕获的损失可以现在回收,许多被保留的浪费可以从系统中释放出来。这将转化为金钱的节省和能源的节省,这也是为什么黄仁勋常说‘买得越多,省得越多’。 黄仁勋还表示,加速计算确实带来了非凡的成果,但它并不容易。为什么它能省这么多钱,但这么长时间以来人们却没有这样做呢?原因是因为这非常难。没有一种软件可以通过C编译器运行,突然间应用程序就快了100倍。这甚至不合逻辑。如果可以做到这一点,他们早就改造 CPU了。 事实上,必须重写软件,这是最难的部分。软件必须完全重写,以便能够重新表达在 CPU 上编写的算法,使其能够被加速、卸载并行运行。这种计算机科学的练习极其困难。 黄仁勋表示,在过去 20 年里,英伟达让全世界变得更容易。当然,非常著名 cuDNN,即处理神经网络的深度学习库。英伟达有一个 AI 物理库,可以用于流体动力学和许多其他应用中,神经网络必须遵守物理定律。英伟达有一个叫 Arial Ran 新的伟大库,它是一个 CUDA 加速 5G 无线电,能够像定义世界网络互联网一样定义和加速电信网络。加速的能力使我们能够将所有的电信转变为与云计算平台相同类型的平台。 cuLITHO 是一个计算光刻平台,能够处理芯片制造中最计算密集的部分——制作掩膜。台积电正在使用 cuLITHO 进行生产,节省了大量的能源和金钱。台积电的目标是加速他们的堆栈,以便为进一步的算法和更深入、更窄的晶体管的计算做好准备。Parabricks 是英伟达基因测序库,它是世界上吞吐量最高的基因测序库。cuOpt是一个用于组合优化、路线规划优化的令人难以置信的库,用于解决旅行商问题,非常复杂。 科学家们普遍认为需要量子计算机来解决这个问题。英伟达创造了一个在加速计算上运行的算法,运行速度极快,创下了23项世界纪录。cuQuantum是一个量子计算机的模拟系统。如果你想设计一个量子计算机,你需要一个模拟器。如果你想设计量子算法,你需要一个量子模拟器。如果量子计算机不存在,你如何设计这些量子计算机,创建这些量子算法呢?你使用今天世界上最快的计算机,当然就是NVIDIA CUDA。在上面,英伟达有一个模拟器,可以模拟量子计算机。它被全世界数十万研究人员使用,并集成到所有领先的量子计算框架中,广泛用于科学超级计算中心。 cuDF是一个令人难以置信的数据处理库。数据处理消耗了今天云端支出的绝大部分,所有这些都应该被加速。cuDF加速了世界上使用的主要库,比如Spark,许多公司可能都在使用Spark,Pandas,一个新的叫做Polars的库,当然还有NetworkX,一个图处理数据库库。这些只是一些例子,还有很多其他的。 黄仁勋表示,英伟达必须创建这些库,以便让生态系统能够利用加速计算。如果英伟达没有创建cuDNN,光有 CUDA 是不可能让全世界的深度学习科学家使用的,因为 CUDA、TensorFlow 和 PyTorch中使用的算法之间的距离太远了。这几乎像是在没有OpenGL 情况下做计算机图形处理,或者没有 SQL 的情况下进行数据处理。这些特定领域的库是英伟达的珍宝,总共有350个库。正是这些库使英伟达能够打开如此多的市场。 上周,Google 宣布在云端加速 Pandas,这是世界上最流行的数据科学库。你们中的许多人可能已经在使用Pandas,它被全球 1000 万数据科学家使用,每月下载1.7 亿次。它是数据科学家的电子表格。现在,只需点击一下,你就可以在 Google 云数据中心平台 Colab 中使用由 cuDF 加速 Pandas,加速效果真的非常惊人。 当你将数据处理加速到如此快的速度时,演示确实不会花很长时间。现在 CUDA 已经达到了人们所说的临界点,但它甚至更好。CUDA 现在已经实现了一个良性循环。 这种情况很少发生。如果你看看历史上所有计算架构的平台。以微处理器 CPU 为例,它已经存在了 60 年,并且在这个层面上没有发生变化。这种计算方式,加速计算已经存在,创建一个新平台极其困难,因为这是一个先有鸡还是先有蛋的问题。 如果没有开发人员使用你的平台,那么当然也就不会有用户。但是如果没有用户,就没有安装基础。如果没有安装基础,开发人员就不会对它感兴趣。开发人员希望为大型安装基础编写软件,但大型安装基础需要大量应用程序来吸引用户创建安装基础。 这种先有鸡还是先有蛋的问题很少被打破。而英伟达花了 20 年的时间,一个领域的库接着一个领域的库,一个加速库接着一个加速库,现在有 500 万开发人员在全球范围内使用英伟达的平台。 英伟达服务于每一个行业,从医疗保健、金融服务、计算机行业、汽车行业,几乎所有主要行业,几乎所有科学领域,因为英伟达的架构有这么多客户,OEM 厂商和云服务提供商对构建英伟达的系统感兴趣。像台湾这里的系统制造商这样的优秀系统制造商对构建英伟达的系统感兴趣,这使得市场上有更多的系统可供选择,这当然为我们创造了更大的机会,使我们能够扩大规模,研发规模,从而进一步加速应用。 每次加速应用,计算成本就会下降。100 倍加速转化为 97%、96%、98% 节省。因此,当我们从 100 倍加速到 200 倍加速,再到 1000 倍加速时,计算的边际成本继续下降。 英伟达相信,通过大幅降低计算成本,市场、开发人员、科学家、发明家将继续发现越来越多的算法,这些算法消耗越来越多的计算资源,最终会发生质的飞跃,计算的边际成本如此之低,以至于一种新的计算使用方式出现了。 事实上,这正是现在看到的情况。多年来,英伟达在过去 10 年里将某种特定算法的边际计算成本降低了百万倍。因此,现在训练包含整个互联网数据的 LLM 是非常合理和常识的,没有人会怀疑。这个想法,即你可以创建一个能够处理如此多数据的计算机来编写自己的软件。AI 的出现是因为完全相信,如果让计算变得越来越便宜,总会有人找到一个伟大的用途。 如今,CUDA 已经实现了良性循环。安装基础在增长,计算成本在下降,这导致更多的开发人员提出更多的想法,从而推动更多的需求。现在我们正处在一个非常重要的起点。 黄仁勋接着提到了地球2的想法,将创建地球的数字孪生体,通过模拟地球,可以更好地预测未来,从而更好地避免灾害,更好地理解气候变化的影响,以便更好地适应。 研究人员在 2012 年发现了 CUDA,那是英伟达与 AI 第一次接触,这是一个非常重要的日子。有幸与科学家合作,使深度学习成为可能。 AlexNet 取得了巨大的计算机视觉突破。但更重要的是,退一步理解深度学习的背景、基础以及其长期影响和潜力。英伟达意识到这项技术具有巨大的扩展潜力。一种几十年前发明和发现的算法,突然之间,因为更多的数据、更大的网络以及非常重要的更多计算资源,深度学习实现了人类算法无法实现的成就。 现在想象一下,如果进一步扩展架构,更大的网络、更多的数据和更多的计算资源,可能会实现什么。2012年之后,英伟达改变了GPU的架构,增加了 Tensor 核心。英伟达发明了NVLink,那是10年前的事了,CUDA,然后是TensorRT、NCCL,收购了Mellanox、TensorRT-ML、Triton推理服务器,所有这些都整合在一台全新的计算机上。没有人理解,没有人要求,没有人理解它的意义。 事实上,黄仁勋确信没有人想买它,英伟达在 GTC 上宣布了它,OpenAI,一个位于旧金山的小公司,请求英伟达为他们提供一台。 2016 年,黄仁勋向 OpenAI 交付了第一台 DGX,世界上第一台 AI 超级计算机。之后,继续扩展,从一台 AI 超级计算机,一台 AI 设备,扩展到大型超级计算机,甚至更大。 到2017年,世界发现了Transformer,使能够训练大量数据,识别和学习长期序列模式。现在,英伟达可以训练这些 LLM,理解并在自然语言理解方面取得突破。继续前进,建造了更大的系统。 然后在 2022 年 11 月,使用成千上万英伟达 GPU和非常大的 AI 超级计算机进行训练,OpenAI 发布了 ChatGPT,五天内用户达到一百万,两个月内达到一亿,成为历史上增长最快的应用。 在 ChatGPT 向世界展示之前,AI 一直是关于感知,自然语言理解、计算机视觉、语音识别。这一切都是关于感知和检测的。这是第一次,世界解决了生成式 AI,逐个生成 token,而这些 token 是单词。当然,有些 token 现在可以是图像、图表、表格、歌曲、单词、语音、视频。这些 token 可以是任何你能理解其意义的东西,它们可以是化学品的 token ,蛋白质的 token ,基因的 token 。你们之前在地球 2 项目中看到的,生成的是天气的 token 。 我们可以理解,我们可以学习物理。如果你能学习物理,你可以教 AI 模型物理。AI 模型可以学习物理的意义,然后可以生成物理。我们将其缩小到 1 公里,不是通过过滤,而是生成。所以我们可以用这种方法生成几乎任何有价值的 token 。我们可以为汽车生成方向盘控制,为机器人手臂生成动作。我们可以学习的一切,现在都可以生成。 ▍AI 工厂 我们现在已经进入了生成式 AI 时代。但是,真正重要的是,这台最初作为超级计算机的计算机现在已经演变成了一个数据中心,它只生成一种东西,那就是 token ,它是一个 AI 工厂,这家 AI 工厂正在生成、创造和生产一种极具价值的新商品。 19 世纪 90 年代末,尼古拉·特斯拉发明了交流发电机,而英伟达发明了AI 生成器。交流发电机生成电子,英伟达 AI 生成器生成 token,这两种东西在市场上都有巨大的机会,在几乎每个行业中都是完全可以替代的,这也是为什么这是一次新的工业革命。 英伟达现在有一个新的工厂,为每个行业生产一种新的商品,这种商品具有非凡的价值。这种方法具有高度的可扩展性,并且这种方法的可重复性也非常高。 注意到每天都有这么多不同的生成式 AI 模型被发明出来。每个行业现在都在涌入。第一次,价值 3 万亿美元 IT 行业,正在创造一些可以直接服务于 100 万亿美元产业的东西。不再只是信息存储或数据处理的工具,而是一个为每个行业生成智能的工厂。这将成为一个制造业产业,但不是计算机制造业,而是使用计算机进行制造业。 这在历史上从未发生过。加速计算带来了AI,带来了生成式 AI,现在带来了工业革命。对行业的影响也非常显著,可以为许多行业创造一种新商品,一种新的产品,称之为 token ,但对我们自己的行业的影响也非常深远。 60 年来,计算的每一层都发生了变化,从 CPU 通用计算到加速 GPU 计算,计算机需要指令。现在计算机处理 LLM,AI模型。而过去的计算模型是基于检索的。几乎每次你触摸手机时,都会为你检索一些预录文本、图像或视频,并基于推荐系统重新组合并呈现给你。 黄仁勋表示,未来计算机将尽可能多地生成数据,只检索必要的信息。原因是生成的数据需要更少的能量去获取信息。生成的数据也更具上下文相关性。它将编码知识,理解你。你不再是让计算机获取信息或文件,而是让它直接回答你的问题。计算机将不再是我们使用的工具,而是生成技能,执行任务。 ▍NIMs,英伟达推理微服务 而不是一个生产软件的行业,这在 90 年代初是一个革命性的想法。记得微软创造的软件包装的想法革命化了PC 行业。没有包装软件,我们会用 PC 做什么?它驱动了这个行业,现在英伟达有一个新的工厂,一个新的计算机。我们将在其上运行一种新的软件,称之为 NIMs,英伟达推理微服务。 NIM 在这个工厂内部运行,这个 NIM 是一个预训练模型,它是一个AI。这个 AI 本身非常复杂,但运行 AI 的计算堆栈是极其复杂的。当你使用 ChatGPT 时,其背后的堆栈是大量的软件。其背后的提示符是大量的软件,极其复杂,因为模型庞大,有数十亿到数万亿的参数。它不仅在一台计算机上运行,而是在多台计算机上运行。它必须在多个 GPU 之间分配工作负载,使用张量并行、流水线并行、数据并行、各种并行性、专家并行性等各种并行性,在多个 GPU 之间分配工作负载,尽可能快速地处理它。 因为如果你在一个工厂里运行,你的吞吐量直接与收入相关。你的吞吐量直接与服务质量相关,你的吞吐量直接与能使用你服务的人数相关。 我们现在处于一个数据中心吞吐量利用率至关重要的世界。在过去这很重要,但没有现在重要。在过去这很重要,但人们不测量它。今天,每一个参数都被测量,启动时间、运行时间、利用率、吞吐量、空闲时间等,因为这是一个工厂。当某物是一个工厂时,其操作直接与公司的财务表现相关,这对大多数公司来说极其复杂。 所以英伟达做了什么?英伟达创建了这个 AI 盒子,这个容器里装满了大量的软件,这个容器内部包括 CUDA、cuDNN、TensorRT、Triton 推理服务。它是云原生的,可以在 Kubernetes 环境中自动扩展,它有管理服务和钩子,可以监控你的 AI。它有通用 API,标准 API,你可以与这个盒子聊天。下载这个 NIM,可以与它聊天,只要你的计算机上有 CUDA,它现在当然是无处不在的。它在每一个云中可用,来自每一个计算机制造商。它在数亿台 PC 上可用,所有的软件都整合在一起,400 个依赖项都整合在一个里面。 英伟达测试了这个NIM,每一个预训练模型都在整个安装基础上测试,所有不同版本的 Pascal、Ampere 和 Hopper,以及各种不同的版本。我甚至忘记了一些名字。令人难以置信的发明,这是我最喜欢的之一。 黄仁勋表示,英伟达有所有这些不同版本,无论是基于语言的还是基于视觉的,还是基于图像的,或者用于医疗保健、数字生物学的版本,有数字人类的版本,只需访问 ai.nvidia.com。 黄仁勋还表示,今天英伟达刚刚在 HuggingFace 上发布了完全优化的 Llama3 NIM,它在那里可以供你尝试,你甚至可以带走它。它免费提供给你。你可以在云中运行它,在任何云中运行。你可以下载这个容器,将其放入你自己的数据中心,并可以使其可用于你的客户。 英伟达有各种不同领域的版本,物理学,一些用于语义检索,称为 RAGs,视觉语言,各种不同的语言。你使用它们的方法是将这些微服务连接到大型应用程序中。 未来最重要的应用之一当然是客户服务。几乎每个行业都需要 Agent。这代表了数万亿美元的客户服务。护士在某些方面也是客户服务 Agent,一些非处方或非诊断性的护士基本上是零售业的客户服务,快速服务食品、金融服务、保险业。数以千万计的客户服务现在可以通过语言模型和AI增强。因此你看到的这些盒子基本上就是NIMs。 一些 NIM 是推理 Agent,给出任务,确定任务,分解成计划。一些 NIM 检索信息。一些 NIM 可能会进行搜索。一些 NIM 可能会使用工具,比如黄仁勋之前提到的 cuOpt。它可以使用在 SAP 上运行的工具。因此它必须学习一种叫做 ABAP 的特定语言。也许一些 NIM 必须进行 SQL 查询。因此,所有这些 NIM 都是专家,现在被组装成一个团队。 所以发生了什么变化?应用层发生了变化。过去用指令编写的应用程序,现在是组装AI团队的应用程序。很少有人知道如何编写程序,但几乎每个人都知道如何分解问题并组装团队。我相信未来每家公司都会有大量 NIM 集合。你会下载你想要的专家,将它们连接成一个团队,你甚至不必确切知道如何连接它们。你只需将任务交给一个 Agent,一个NIM,让它确定如何分配任务。那个团队领导 Agent 将会分解任务并分配给各个团队成员。团队成员会执行任务,将结果返回给团队领导,团队领导会对结果进行推理并将信息呈现给你,就像人类一样,这是不久的未来,应用的未来形态。 当然,可以通过文本提示和语音提示与这些大型 AI 服务互动。然而,有许多应用程序希望与人类形式互动。英伟达称之为数字人类,并一直在研究数字人类技术。 黄仁勋继续介绍,数字人类有可能成为与你互动的伟大 Agent,使互动更加引人入胜,更有同情心。当然,我们必须跨越这个巨大的现实鸿沟,使数字人类显得更加自然。想象一下未来,计算机能够像人类一样与我们互动。这就是数字人类的惊人现实。数字人类将彻底改变从客户服务到广告和游戏的各个行业。数字人类的可能性是无穷无尽的。 使用你当前厨房的扫描数据。通过你的手机,它们将成为AI室内设计师,帮助生成美丽的照片级建议,并提供材料和家具的来源。 英伟达已经为你生成了几种设计选项可供选择。它们还将成为 AI 客户服务 Agent,使互动更加生动和个性化,或数字医疗工作者,检查病人,提供及时和个性化的护理,它们甚至会成为 AI 品牌大使,设定下一波市场营销和广告趋势。 生成式 AI 和计算机图形学的新突破让数字人类能够以类似人类的方式看见、理解和与我们互动。从我所看到的情况来看,你似乎是在某种录音或制作设置中。数字人类的基础是建立在多语言语音识别和合成、以及能够理解和生成对话的LLM模型上的AI模型。 这些 AI 连接到另一个生成式 AI,以动态地动画化一个逼真的 3D 面部网格。最后,AI模型重现逼真的外观,实现实时路径跟踪的次表面散射,模拟光线如何穿透皮肤、散射并在不同点出射,使皮肤具有柔和和半透明的外观。 Nvidia Ace 是一套数字人类技术,打包成易于部署的完全优化的微服务或NIMs。开发者可以将Ace NIMs集成到他们现有的框架、引擎和数字人类体验中,Nematons SLM和LLM NIMs 理解我们的意图并协调其他模型。 Riva Speech Nims 用于交互式语音和翻译,Audio to Face 和 Gesture NIMs 用于面部和身体动画,Omniverse RTX 与 DLSS 用于皮肤和头发的神经渲染。 相当令人难以置信。这些 Ace 可以在云端运行,也可以在 PC 上运行,在所有 RTX GPU中都包括了张量核心 GPU,所以英伟达已经在出货 AI GPU,为这一天做准备。原因很简单,为了创建一个新的计算平台,首先需要一个安装基础。 最终,应用程序会出现。如果不创建安装基础,应用程序怎么会出现呢?所以如果你建造它,他们可能不会来。但如果你不建造它,他们就不能来。因此,英伟达在每一个 RTX GPU 中安装了张量核心处理器。现在英伟达在全球有 1 亿台 GeForce RTX AI PC,并且英伟达正在出货 200 台。 在本次 Computex,英伟达展示了四款新的令人惊叹的笔记本电脑。它们都能够运行AI。未来的笔记本电脑、PC 将成为一个AI。它将不断在后台帮助你、协助你。PC还将运行由AI增强的应用程序。 当然,你所有的照片编辑、写作工具、你使用的一切工具都将由AI增强。你的PC还将托管带有数字人类的 AI 应用程序。因此,AI 将在不同的方式中表现出来并被用于PC中。PC 将成为非常重要的 AI 平台。 那么我们从这里往哪里走?我之前谈到了数据中心的扩展。每次扩展时,我们都会发现一个新的飞跃。当从 DGX 扩展到大型 AI 超级计算机时,英伟达使 Transformer 能够在非常大的数据集上进行训练。一开始,数据是人工监督的,需要人工标注来训练 AI。不幸的是,人类标注的数据是有限的。Transformer 使得无监督学习成为可能。现在,Transformer 只需查看大量的数据、视频或图像,它就能通过研究大量的数据自己找到模式和关系。 下一代 AI 需要基于物理。今天的大多数 AI 不了解物理定律,它们没有扎根于物理世界。为了生成图像、视频和3D图形以及许多物理现象,我们需要基于物理并了解物理定律的 AI。你可以通过视频学习来实现这一点,这是一种来源。 另一种方法是合成数据、模拟数据,另一种方法是让计算机相互学习。这实际上与 AlphaGo 自我对弈没有什么不同,通过相同能力的对弈,经过很长时间,它们会变得更加聪明。你将开始看到这种类型的AI出现。 如果 AI 数据是合成生成的,并使用强化学习,数据生成的速度将继续提高。每次数据生成增长,需要提供的计算量也需要增长。 我们即将进入一个阶段,AI 可以学习物理定律,并扎根于物理世界的数据中。因此,英伟达预计模型将继续增长,我们需要更大的GPU。 ▍Blackwell Blackwell 是为这一代设计的,拥有几项非常重要的技术。首先是芯片的大小。英伟达在台积电制造了最大的芯片,并将两个芯片通过每秒 10TB的连接连接在一起,世界上最先进的 SerDes 将这两个芯片连接在一起。然后英伟达将两个芯片放在一个计算节点上,通过 Grace CPU 连接。 Grace CPU 可以用于多种用途。在训练情况下,可以用于快速检查点和重启。在推理和生成情况下,可以用于存储上下文记忆,使AI了解你想要进行的对话的上下文,这是英伟达的第二代Transformer引擎,允许根据计算层所需的精度和范围动态调整精度。 这是第二代具有安全 AI 的 GPU,可以要求服务提供商保护 AI 免受盗窃或篡改。这是第五代 NVLink,允许将多个 GPU 连接在一起,我会稍后详细介绍。 这是英伟达的第一代具有可靠性和可用性引擎的 GPU。这个 RAS 系统允许测试每个晶体管、触发器、片上内存、片外内存,以便现场确定某个芯片是否故障。拥有 1 万个 GPU 的超级计算机的平均故障间隔时间是以小时计算的。拥有10 万个GPU的超级计算机的平均故障间隔时间是以分钟计算的。 因此,如果不发明技术来提高可靠性,超级计算机长时间运行并训练几个月的模型几乎是不可能的。可靠性会提高正常运行时间,从而直接影响成本。最后是解压引擎,数据处理是必须做的最重要的事情之一。英伟达添加了一个数据压缩引擎和解压引擎,使英伟达够从存储中提取数据的速度提高 20 倍,比今天可能的速度更快。 Blackwell 正在生产中,拥有大量的技术,可以看到每一个 Blackwell 芯片,两个连接在一起。你看到这是世界上最大的芯片。然后将两个芯片通过每秒 10TB 连接在一起,性能是惊人的。 英伟达的每一代计算的浮点运算能力增加了 1000 倍。摩尔定律在八年内增长大约 40~60 倍。而在过去的八年里,摩尔定律的增长速度大大减慢。即使在摩尔定律最好的时候,也无法与 Blackwell 性能相比。 计算量是惊人的。每次提高计算能力,成本就会下降。英伟达已经通过增加计算能力,将训练 GPT-4 能量需求从 1000 GWh 降低到 3 GWh。Pascal 需要 1000 GWh 的能量。1000 GWh 意味着需要一个 GW 数据中心。世界上没有一个 GW的数据中心,但如果你有一个 GW 数据中心,它需要一个月。如果你有一个100 MW 数据中心,需要大约一年。因此,没有人会建造这样的设施。 这就是为什么在八年前,像 ChatGPT 这样的 LLM 是不可能的。通过提高性能,随着能效的提高,英伟达现在将 Blackwell 的能量需求从 1000 GWh 降低到 3 GWh,这是一个令人难以置信的进步。如果是1万个GPU,例如,需要几天,可能需要10天左右。在短短八年内取得的进展是惊人的。 这部分是关于推理和生成 token 的。生成一个GPT-4 token 需要两个灯泡运行两天。生成一个单词大约需要三个 token 。因此,Pascal 生成 GPT-4 并与你进行 ChatGPT 体验所需的能量几乎是不可能的。但是现在每个 token 只使用 0.4 焦耳,并且可以以极低的能量生成 token 。 Blackwell是一个巨大的飞跃。即便如此,它还不够大。因此必须建造更大的机器。因此英伟达建造的方法叫做 DGX。 这是一个 DGX Blackwell,这是空气冷却的,内部有8个GPU。看看这些GPU上的散热片的大小,大约15千瓦,完全是空气冷却的。这一版本支持x86,并进入了英伟达一直在发货的 Hoppers 基础设施,英伟达有一个新的系统,称之为MGX,意为模块化系统。 两块Blackwell板子,一个节点有四个 Blackwell 芯片。这些 Blackwell 芯片是液冷的,72 个 GPU通过新的 NVLink 连接在一起。这是第 5 代 NVLink 交换机,NVLink 交换机本身就是一个技术奇迹,这是世界上最先进的交换机,数据速率惊人,这些交换机将每一个 Blackwell 连接在一起,因此有一个巨大的 72 个 GPU 的 Blackwell。 这样做的好处是,在一个域中,一个 GPU 域现在看起来像一个 GPU,这个 GPU 有 72个,而上一代是 8 个。因此增加了九倍的带宽。AI 浮点运算性能增加了 18 倍,提高了 45 倍。而功耗仅增加了 10 倍,这是 100 千瓦,而那是 10 千瓦。这是一个。 当然,你总是可以将更多这些连接在一起,我稍后会展示如何做到这一点。但奇迹在于这个芯片,这个 NVLink 芯片。人们开始意识到这个 NVLink 芯片的重要性,因为它连接了所有这些不同 GPU。因为 LLM 非常庞大,不能仅仅放在一个GPU上,也不能仅仅放在一个节点上。它需要整个 GPU 机架,比如我刚刚站在旁边的新DGX,它可以容纳数万亿参数的 LLM。 NVLink 交换机本身就是一个技术奇迹,拥有 500 亿个晶体管,74 个端口,每个端口 400Gbps,横截带宽 7.2Tbps。但重要的是它在交换机内有数学运算能力,这在深度学习中非常重要,可以在芯片上进行归约运算。所以这就是现在的DGX。 黄仁勋表示,许多人问,有人对英伟达的工作产生了困惑,为什么英伟达通过制造 GPU 变得如此庞大。因此有人认为这就是 GPU 的样子。 现在这是一个GPU,这是世界上最先进的GPU之一,但这是一个游戏GPU。你和我知道这就是GP的样子。这是一个GPU,女士们先生们,DGX GPU。你知道这个GPU的背面是NVLink主干。NVLink 主干有 5000 根线,两英里长,它将两个GPU连接在一起,这是一个电气、机械奇迹。收发器使能够在铜线上驱动整个长度,能够在一个机架中节省 20 千瓦的功耗。 黄仁勋表示,有两种类型的网络。InfiniBand 在全球超级计算和 AI 工厂中被广泛使用,增长速度惊人。然而,不是每个数据中心都能处理 InfiniBand,因为他们已经在其生态系统中投资了太多 Ethernet,并且管理 InfiniBand 交换机和网络需要一些专业知识。 因此英伟达将 InfiniBand 能力带到了 Ethernet 架构,这是非常困难的。原因很简单。Ethernet 是为高平均吞吐量设计的,因为每个节点,每台计算机都连接到互联网上的不同人,大多数通信是数据中心与互联网另一端的人进行的。 然而,深度学习和 AI 工厂,GPU 主要是相互通信的。它们彼此通信,因为它们在收集部分产品,然后进行归约并重新分发。部分产品的收集、归约和重新分发。这种流量是非常突发的,重要的不是平均吞吐量,而是最后一个到达的。因此英伟达创建了几项技术,创建了端到端架构,使网络接口卡和交换机可以通信,并应用了四种不同的技术来实现这一点。首先,英伟达拥有世界上最先进的 RDMA,现在能够在 Ethernet 上进行网络级 RDMA,这是非常了不起的。 第二,英伟达有拥塞控制。交换机一直在进行快速遥测,当 GPU 或网络接口卡发送太多信息时,可以告诉它们退后,以免造成热点。 第三,自适应路由。Ethernet 需要按顺序传输和接收。英伟达看到拥塞或未使用的端口,不论顺序如何,将发送到可用端口,BlueField 在另一端重新排序,以确保顺序正确,自适应路由非常强大。 最后,噪声隔离。数据中心总是有多个模型在训练或其他事情在进行,它们的噪声和流量可能相互干扰并导致抖动。因此,当一个训练模型的噪声导致最后一个到达的时间过晚时,整体训练速度会显著降低。 记住,你已经建造了一个价值 50 亿美元或 30 亿美元的数据中心,用于训练。如果网络利用率降低 40%,导致训练时间延长 20%,50 亿美元的数据中心实际上相当于一个 60 亿美元的数据中心。因此成本影响非常大。使用 Spectrum X 的 Ethernet 允许大幅提高性能,而网络基本上是免费的。 英伟达有一整条 Ethernet产品线。这是 Spectrum X800,速度为每秒51.2Tbps,256个端口。接下来的是512个端口,明年推出,称为 Spectrum X800 Ultra,再接下来是 X16。重要的理念是 X800 设计用于成千上万个 GPU,X800 Ultra 设计用于数十万个 GPU,X16 设计用于数百万个 GPU,数百万 GPU 数据中心时代即将到来。 未来几乎你与互联网或计算机的每一次互动都会在某个地方运行一个生成式AI。这个生成式AI与你合作,与你互动,生成视频、图像或文本,甚至是一个数字人类。你几乎一直在与计算机互动,总有一个生成式 AI 连接着,部分在本地,部分在你的设备上,大部分可能在云端。这些生成式 AI 还会进行大量推理能力,不是一次性的回答,而是通过多次迭代改进答案的质量。所以未来生成的内容量将是惊人的。 Blackwell当然是英伟达平台的第一代,在世界认识到生成式AI时代来临之际发布。正当世界意识到AI工厂的重要性,正值这一新工业革命的开始。英伟达得到了几乎所有 OEM、计算机制造商、云服务提供商、GPU云、主权云,甚至电信公司的支持。Blackwell 的成功、采用和热情真是难以置信。我想感谢大家。 黄仁勋继续比哦啊是,在这个惊人的增长期间,英伟达要确保继续提高性能,继续降低训练成本和推理成本,并继续扩展 AI 能力,使每家公司都能接受。英伟达推动性能的提升,成本的下降越大。Hopper 平台当然是历史上最成功的数据中心处理器,这真的是一个不可思议的成功故事。 然而,Blackwell 已经到来,每一个平台,如你所见,都包含了几样东西。你有CPU,有 GPU,有NVLink,有网络接口,还有连接所有GPU的 NVLink 交换机,尽可能大规模的域。无论能做什么,英伟达都将其连接到大规模、非常高速的交换机。 每一代产品,你会发现不仅仅是 GPU,而是整个平台。构建整个平台。将整个平台集成到一个 AI 工厂超级计算机中。然而,再将其分解并提供给世界。这样做的原因是因为你们所有人都可以创建有趣和创新的配置,并适应不同的数据中心和不同的客户需求,有些用于边缘计算,有些用于电信。所有不同的创新都是可能的,如果将系统开放,并使你们能够创新。因此英伟达设计了集成的,但将其分解提供给客户,以便可以创建模块化系统。 Blackwell 平台已经到来,英伟达的基本理念非常简单:每年构建整个数据中心,分解并以零件形式销售,将一切推向技术的极限,无论是台积电的工艺技术、封装技术、内存技术、SerDes技术、光学技术,一切都被推向极限。之后,确保所有软件都能在整个安装基础上运行。 软件惯性是计算机中最重要的事情之一。当计算机向后兼容,并与所有已创建的软件架构兼容时,你进入市场的速度会快得多。因此,当能够利用已经创建的整个软件安装基础时,速度是惊人的。 黄仁勋表示,Blackwell 已经到来,明年是 Blackwell Ultra,就像有 H100 和H200,你们可能会看到一些令人兴奋的新一代 Blackwell Ultra,推动极限。我提到的下一代 Spectrum 交换机,这是第一次实现这种飞跃,下一代平台叫做Ruben,再一年后将有 Ruben Ultra 平台。 展示的所有这些芯片都在全速开发中,100% 的开发。这是英伟达一年的节奏,所有 100% 架构兼容,英伟达正在构建的所有丰富的软件。 ▍AI 机器人 让我谈谈接下来会发生什么,下一波 AI 是物理 AI,了解物理定律,能够在我们中间工作。因此,它们必须理解世界模型,理解如何解释世界,如何感知世界。它们当然还需要出色的认知能力,以便理解我们的问题并执行任务。 机器人是一个更广泛的概念。当然,当我说机器人时,通常指的是人形机器人,但这并不完全正确。一切都将是机器人。所有的工厂将是机器人化的,工厂将协调机器人,这些机器人将制造机器人产品,机器人相互协作,制造机器人产品。为了实现这一点,需要一些突破。 接下来,黄仁勋展示了一段视频,视频中提到: 机器人时代已经到来。一天内,所有移动的东西都将是自主的。世界各地的研究人员和公司正在开发由物理AI驱动的机器人,这些AI模型能够理解指令,并在现实世界中自主执行复杂任务。多模态 LLM 是突破,使机器人能够学习、感知和理解周围的世界,并规划它们的行动。 通过人类演示,机器人现在可以学习所需的技能,使用粗大和精细的运动技能与世界互动。推进机器人技术的一个关键技术是强化学习。就像 LLM 需要 RLHF来学习特定技能一样,生成物理 AI 可以使用物理反馈在模拟世界中学习技能。这些模拟环境是机器人通过在遵循物理定律的虚拟世界中执行动作来学习决策的地方。在这些机器人健身房中,机器人可以安全快速地学习执行复杂和动态的任务,通过数百万次试验和错误行为来提高技能。 英伟达构建了Nvidia Omniverse 作为物理AI的操作系统。Omniverse 是一个虚拟世界模拟开发平台,结合了实时物理渲染、物理模拟和生成式AI技术。在Omniverse 中,机器人学习如何成为机器人。它们学习如何自主精确地操控物体,比如抓取和处理物体,或自主导航环境,找到最佳路径,同时避免障碍和危险。在 Omniverse 中学习最大限度地减少模拟与现实的差距,并最大限度地转移所学行为。 构建具有生成物理AI的机器人需要三台计算机:Nvidia AI超级计算机来训练模型,Nvidia Jetson Orin 和下一代 Jetson Thor 机器人超级计算机来运行模型,以及Nvidia Omniverse,机器人可以在模拟世界中学习和改进技能。构建了开发人员和公司所需的平台、加速库和AI模型,并允许他们使用最适合的堆栈。下一波AI已经到来。由物理 AI 驱动的机器人将彻底改变各个行业。 黄仁勋提到,这不是未来,这正在发生。英伟达将通过几种方式服务市场。首先,英伟达将为每种类型的机器人系统创建平台,一个用于机器人工厂和仓库,一个用于操纵物体的机器人,一个用于移动的机器人,一个用于人形机器人。因此,每个机器人平台就像英伟达做的几乎所有事情一样,都是计算机、加速库和预训练模型。计算机、加速库、预训练模型。在 Omniverse 中测试、训练和集成所有东西,正如视频所说,机器人在这里学习如何成为机器人。 当然,机器人仓库的生态系统非常复杂。建造现代仓库需要很多公司、很多工具、很多技术,仓库正日益自动化。有一天,它们将完全自动化。因此,在每个生态系统中,都有连接到软件行业的 SDK 和 API,连接到边缘 AI 行业和公司的 SDK 和 API,以及为 Odms 设计的 PLC 和机器人系统的系统集成。这些最终由集成商集成,构建给客户的仓库。这里有一个例子,Kenmac 为 Giant 集团构建的机器人仓库。 黄仁勋继续表示,工厂有一个完全不同的生态系统,富士康正在建造一些世界上最先进的工厂。它们的生态系统再次包括边缘计算机和机器人,设计工厂的软件、工作流程、编程机器人以及协调数字工厂和 AI 工厂的 PLC 计算机。英伟达有连接到每个生态系统的 SDK,这在整个台湾都在发生。 富士康正在为其工厂建造数字孪生体。台达正在为其工厂建造数字孪生体。顺便说一下,一半是真实的,一半是数字的,一半是Omniverse。和硕正在为其机器人工厂建造数字孪生体,广达正在为其机器人工厂建造数字孪生体。 黄仁勋继续演示了一段视频,视频中提到: 随着世界将传统数据中心现代化为生成式AI工厂,对Nvidia加速计算的需求正在飙升。富士康,世界上最大的电子制造商,正准备通过Nvidia Omniverse和AI建造机器人工厂来满足这一需求。工厂规划人员使用Omniverse将来自西门子Team Center X和Autodesk Revit等领先行业应用程序的设施和设备数据集成到数字孪生体中。 在数字孪生体中,他们优化了地板布局和生产线配置,并定位了最佳相机位置,以使用Nvidia Metropolis支持的视觉AI监控未来的操作。虚拟集成节省了规划人员在建设期间巨大的物理变更订单成本。富士康团队使用数字孪生体作为准确设备布局的真实来源进行沟通和验证。 Omniverse数字孪生体也是机器人健身房,富士康开发人员在这里为机器人感知和操作训练和测试Nvidia Isaac AI应用程序,以及用于传感器融合的Metropolis AI应用程序。 黄仁勋继续表示,在Omniverse中,富士康模拟了两个机器人AI,在将运行时部署到装配线上的 Jetson 计算机之前。他们模拟了 Isaac Manipulator 库和用于自动光学检测的AI模型,以进行物体识别、缺陷检测和轨迹规划。他们还模拟了Isaac Perceptor驱动的Ferrobot AMRS,这些机器人通过3D映射和重建感知和移动他们的环境。通过Omniverse,富士康建立了运行在Nvidia Isaac上的机器人工厂,这些机器人建造了Nvidia AI超级计算机,反过来训练富士康的机器人。 一个机器人工厂设计了三台计算机。首先在Nvidia AI上训练AI,然后在PLC系统上运行机器人以协调工厂操作,最后在Omniverse中模拟一切。机器人手臂和机器人AMRS也是如此,三台计算机系统的区别在于两个Omniverse将结合在一起,共享一个虚拟空间。当它们共享一个虚拟空间时,机器人手臂将进入机器人工厂。再次强调,三台计算机,提供计算机、加速层和预训练AI模型。 英伟达将Nvidia Manipulator和Nvidia Omniverse与世界领先的工业自动化软件和系统公司西门子连接起来。这真的是一个非常棒的合作,他们正在世界各地的工厂中工作。 Semantic Pick AI现在集成了Isaac Manipulator,Semantic Pick AI运行并操作ABB、Kuka、安川、Fanuc、Universal Robotics和Techman。因此,西门子是一个绝佳的整合。 黄仁勋继续演示了一段视频,视频中提到: Arcbest正在将Isaac Perceptor集成到Fox智能自主机器人中,以增强物体识别和人体动作跟踪及材料处理。比亚迪电子正在将Isaac Manipulator和Perceptor集成到他们的AI机器人中,以提高全球客户的制造效率。Ideal Works正在将Isaac Perceptor集成到他们的iOS软件中,用于工厂物流中的AI机器人。 Gideon正在将Isaac Perceptor集成到托盘AI驱动的叉车中,以推进AI驱动的物流。Argo Robotics正在采用Isaac Perceptor用于高级视觉AMRS的感知引擎。Solomon正在他们的Acupic 3D软件中使用Isaac Manipulator AI模型进行工业操作。Techman Robot正在将Isaac Sim和Manipulator集成到TM Flow中,以加速自动光学检测。Teradine Robotics正在将Isaac Manipulator集成到Polyscope X用于协作机器人,并将Isaac Perceptor集成到MiR AMRS中。 Vention正在将Isaac Manipulator集成到Machine Logic中,用于AI操作机器人。机器人技术已经到来,物理AI已经到来。 黄仁勋继续介绍,这不是科幻小说,它正在整个台湾被广泛应用,真的非常令人兴奋。这是工厂,里面的机器人,当然所有产品也将是机器人化的。 有两种非常高产量的机器人产品。一种当然是自动驾驶汽车或具有高度自动驾驶能力的汽车。英伟达再次构建了整个堆栈。 明年,英伟达将与梅赛德斯车队一起投入生产。之后,在 2026 年,将是 JLR 车队。英伟达向世界提供整个堆栈。然而,你可以选择英伟达堆栈中的任何部分,任何层,就像整个 Drive 堆栈是开放的。 下一个将由机器人工厂内的机器人制造的高产量机器人产品可能是人形机器人。近年来在认知能力和世界理解能力方面取得了巨大进展,这要归功于基础模型和英伟达正在开发的技术。 黄仁勋表示,他对这一领域非常兴奋,因为显然,最容易适应世界的机器人是人形机器人,因为我们为自己建造了这个世界,还可以通过演示和视频提供大量的训练数据,远远超过其他类型的机器人。因此,英伟达将在这一领域看到很多进展。 下一波AI。台湾不仅制造带键盘的计算机,还制造用于口袋的计算机、用于数据中心的计算机。在未来,你们将制造会走动的计算机和四处滚动的计算机。这些都是计算机。事实证明,构建这些计算机的技术与今天你们已经构建的所有其他计算机的技术非常相似,这将是一个非常非凡的旅程。
太平养老迎来外资股东,比利时富杰集团拟增资10.75亿元获10%股权
在历经两年时间的年金投资业务整改后,太平养老迎来了拥有200年经营历史的资深“外援”比利时富杰集团。 界面新闻记者获悉,中国太平(0966.HK)与比利时富杰集团在香港举行签约仪式,富杰集团拟向中国太平旗下全资控股的太平养老保险股份有限公司 (以下简称 “太平养老” ) 投资10.75亿元,获得太平养老10%的股权,双方公开表示将在中国养老金融领域进行战略合作。 作为欧洲大型保险公司之一,富杰集团拥有约200年悠久历史,2023年保费超170亿欧元,在欧洲、亚洲13个国家布局机构,业务范围涵盖人身险、财产险、再保险以及资产管理等。 公开资料显示,在股权交易之前,太平养老共有两家股东,中国太平持股99.99%,中国太平全资持有的龙璧工业区管理(深圳)有限公司(下称“龙璧”)持股0.01%。 此次,太平养老拟通过新发行333333300股新股,富杰认购股份的价格为3.225元/股,合计10.75亿元。此次增资后,太平养老的注册资本将从30亿元增至约33.33亿元。 双方协议还显示,在增资完成后,隐含对本次增资前太平养老股东全部权益估值为97亿元人民币,对应太平养老的市净率约为3.01倍。此外,双方还规定了在3年内的增持选择权,富杰将有权选择通过不定时一次或多次,通过自行认购等方式认购太平养老的股份,最高至24.99%。 界面新闻记者了解到,双方此次合作中,年金投资领域的合作是重要的看点之一。近年来,由于受到人社部暂停新增年金投管的限制,太平养老的部分业务发展遇到一定瓶颈,对整体经营造成了影响。 2021年10月,人社部暂停了太平养老开展年金基金投资管理机构开展新业务,要求两年内不得开展年金基金投资管理新增业务。 太平养老的偿付能力报告显示,2022年末, 太平养老总资产224.6亿元,净资产21.18亿元;全年保险业务收入77.89亿元,净利润2.6亿元。  2023年末,太平养老总资产283.27亿元,净资产34.2亿元;全年保险业务收入为88.9亿元,净利润979.35万元,同比大幅下降。 太平养老在多份报告中指出,2021年的年金投管暂停新增业务影响仍持续释放,管理资产持续流出,叠加资本市场持续震荡,管理费收入下降,年金业务利润承压。虽然2023年10月,人社部通过了公司的年金投资整改,并恢复新增业务,但由于年金投资新增业务开拓和存量留存构成较大压力,以及资本市场持续震荡等,对年金投资绝对收益产生负面影响,也对公司自有资金投资收益产生负面影响,对公司经营带来挑战。 根据界面新闻记者统计,目前,我国已诞生10家养老险公司和1家专业养老金管理公司。今年以来,已有两家专业养老公司增资。 2月20日,恒安标准养老保险有限责任公司发布公告称,国家金融监督管理总局发布恒安标准养老保险有限责任公司变更注册资本的批复,同意恒安标准养老增加注册资本2亿元人民币,由2亿元人民币变更为4亿元人民币。 4月10日,泰康养老保险股份有限公司发布公告表示,为满足公司业务发展和偿付能力需求,公司股东泰康保险集团股份有限公司(以下简称“泰康集团”)计划向泰康养老增资20亿元。 来源:界面新闻
又一家!千亿基金董事长变更
安信基金董事长变更为王苏望。 管理规模超千亿元的安信基金迎来新董事长。加上安信基金,今年已有10余家基金公司迎来新董事长。包括董事长在内,2024年以来公募基金高管变更数量维持高位。Wind数据显示,截至5月30日,2024年以来共有62家基金公司发生高管变动,涉及119位高管。 当前,公募基金行业正从高速发展逐渐转向高质量发展的新阶段,公募机构之间竞争处于白热化阶段。如何带领基金公司持续提高投资能力,在激烈竞争的行业中立于不败之地,作为公募基金高管,这些都是需要直面的问题。抑或是如此激烈的竞争,加剧了公募基金行业高管变动的频率。 安信基金董事长变更为王苏望 近日,安信基金及其股东国投证券官网均显示,国投证券代总经理王苏望已出任安信基金董事长一职。 王苏望履历显示,1971年出生,经济学博士,曾先后担任中国建设银行莆田市分行储蓄所主任,中信证券股份有限公司投资银行部职员,招商证券股份有限公司投资银行总部战略客户部总经理,招商局积余产业运营服务股份有限公司董事、副总经理,国投证券金融衍生品部总经理。 2023年7月,王苏望加入国投证券,目前担任公司副总经理职务,代行总经理职责,同时兼任安信证券投资有限公司董事长、安信基金董事长。 安信基金官网介绍,公司成立于2011年12月,公司股东为国投证券、五矿资本、佛山市顺德区新碧贸易有限公司、中广核财务有限责任公司。 王苏望是安信基金成立10余年以来第三任董事长。安信基金首任董事长由国投证券(更名前为安信证券)前董事长牛冠兴兼任,第二任董事长由国投证券前总经理王连志兼任。 今年4月,王连志被免去公司董事、总经理职务,在公司按程序聘任新任总经理前,公司副总经理王苏望代行总经理职责。 Wind数据显示,安信基金最新规模为1141.89亿元,非货管理规模为995.54亿元。据其股东五矿资本披露,截至2023年末,安信基金实现营业收入8.4亿元,同比下降9.56%;实现净利润1.14亿元,同比增长26.55%。 安信基金总经理刘入领自公司成立之初担任公司总经理至今,公司一半以上的投资骨干均为成立初期的研究员。他此前在接受券商中国记者采访时表示,安信基金成立伊始就确立了“投研立司”的发展理念,决定将资源向投研倾斜,建立有竞争力的激励机制与合理的长期考核机制,涵养人才并给予其施展才华的空间。 年内10余家基金公司董事长变更 2024年以来,公募基金高管变更数量维持高位,高管变更仍较为频繁。Wind数据显示,截至5月30日,2024年以来共有62家基金公司发生高管变动,涉及119位高管。 其中,年内副总经理变动人数最多,为44人,董事长和总经理变动人数分别为30人、28人。 加上安信基金,今年已有广发基金、华西基金、鹏华基金、国泰基金、华润元大基金、中金基金、泰康基金、国寿安保基金、湘财基金、联博基金、贝莱德基金等10余家基金公司迎来新董事长。不难发现,不少基金公司的董事长多由大股东的高管兼任。如广发基金新董事长葛长伟自2022年2月起就任广发证券副董事长、执行董事。华西基金新董事长程华子自2023年12月起任华西证券副总经理。鹏华基金新董事长张纳沙任国信证券党委书记、董事长。 今年以来,基金公司总经理也变更频频。5月份以来,已有华泰保兴、博时基金、九泰基金、摩根士丹利基金4家基金公司迎来新总经理。 5月28日,“保险系”公募基金华泰保兴基金公告,任命王现成为公司新总经理,履新日期为2024年5月27日。5月24日,招商银行财会部总经理兼采购管理部总经理张东正式被任命为博时基金总经理。5月16日,九泰基金发布公告,任命徐进为公司总经理。摩根士丹利基金公告称,5月1日起,副总经理周文秱接任总经理职位。 从近期基金公司总经理履历来看,或是在金融行业历练许久的老将,或拥有丰富投研经历。如周文秱曾任美国奥本海默基金公司高级基金经理,浦银安盛基金副总经理兼首席投资官,海富通资产管理(香港)有限公司高级投资经理,友邦保险有限公司中国区资产管理中心资深总监,中美联泰大都会人寿保险有限公司首席投资官,摩根士丹利基金副总经理兼首席投资官。 今年3月,证监会集中发布了四项“两强两严”政策文件。其中,《关于加强证券公司和公募基金监管加快推进建设一流投资银行和投资机构的意见(试行)》为证券公司和公募基金在经营理念、功能发挥、治理水平、合规意识等方面指明了发展方向。当前,公募基金行业正从高速发展逐渐转向高质量发展的新阶段,公募机构之间竞争处于白热化阶段。 如何带领基金公司持续提高投资能力,在激烈竞争的行业中立于不败之地,作为公募基金高管,这些都是需要直面的问题。抑或是如此激烈的竞争,加剧了公募基金行业高管变动的频率。 “随着资管行业的迅速发展,市场对基金高管需求加大,公募基金高管呈现高频变动在情理之中,未来这一趋势或会延续。”一位基金评价人士指出,人才的良性循环反倒有利于公司和行业的发展。 值得注意的是,从今年发生高管变更的基金管理人来看,中小型公募基金居多。业内分析人士普遍认为,高管变更频率高、任期短等现象暴露出中小公募基金高管人才不稳定的问题,同时也进一步凸显公募基金行业竞争愈发激烈的趋势。 来源:证券时报
连续跳出“预言家”, 南京化纤、中通客车股价大幅波动,交易所火速出手
连续两天,都有股民在股吧神预测个股涨势,而股价表现似乎也与预测出奇一致,究竟是真实预测还是“庄家”蓄谋? 5月21日12点46分,某股民在中通客车(000957.SZ)股民发布消息:“我是庄一点二十拉涨停。” 有意思的是,当日午后开盘,中通客车在13点14分快速拉涨至8%,短暂回调后,13点20分又再次拉升,13点21分涨停封板。 当日,中通客车报11.88元,涨幅10%,市值70.44亿元。 无独有偶,此前5月20日,类似的神准预测就曾出现在南京化纤(600889.SH)身上。同样有人在涨停前的午间13点47分,在同花顺平台发帖“南京化纤下午2:34会有惊喜”。 当天下午南京化纤果真卡点“跳水”跌停。5月21日,南京化纤午后开盘跳水,但是从下午14点13分开始,南京化纤下跌5%的位置开始疯狂拉升,并最终封住涨停,实现8天7板。 两次类似的预测剧情,也引来市场纷纷猜测,是否存在操纵股价嫌疑。 为何选中这两家公司? 界面新闻记者注意到,南京化纤和中通客车均为地方国资控股。 南京化纤1996年就已经上市,公司实控人南京国资委,南京新工投资集团持股35.41%。2021年至2023年,公司已经连续三年亏损,2024年第一季度,公司实现营业总收入1.06亿元,同比增长2.05%;归母净利润亏损3260.83万元,上年同期亏损4421.29万元。 中通客车同样是2000年就已上市的老牌国资企业,隶属于山东国资委旗下的中大客车生产商,国资控股比例超过33%,2024年一季度,公司实现营业收入12.82亿元,同比增长84.73%;归属净利润4238.45万元,同比增长105.08%。 值得注意的是,由于流通盘小,筹码较为固定的特性,南京化纤和中通客车股性相对活跃,均为短线资金“酷爱”炒作对象,南京化纤近期毫无基本面支撑却股价连连大涨,中通客车也每年都会出现大涨大跌的短期走势,2022年曾一度因20台核酸车走出过13连板的妖股趋势。 对于两家公司均出现的“神预言”,有资本人士对界面新闻记者表示,股吧发帖预言股价走势,不太可能是操盘者所为,“涉及操纵股价嫌疑,谁都承担不起,不排除资深股民‘卖弄’,后续应该会启动调查。” 多方回应 连连的神预测引起市场讨论度大增,包括交易所在内的多方也紧急发布“澄清”。 5月21日,交易所连续出手,上交所当日午间公告称,2024年5月20日,南京化纤股票价格出现大幅波动。上交所已关注到关于该股当日股价走势的相关网络信息,并立即启动交易核查,后续将根据核查结果及时依规采取相应措施。上交所提醒广大投资者关注投资风险,合规审慎交易。 上交所官方微博5月21日晚发布关于南京化纤股票核查情况的通报,近日,南京化纤股票价格大幅波动,针对相关投资者编造、传播误导性信息扰乱市场正常交易秩序的行为,本所依规对相关账户采取暂停交易十五日的监管措施,并已将发现的涉嫌违法违规情况移交进一步查处。上交所再次提醒广大投资者关注投资风险,合规审慎交易。 当日盘后,南京化纤也发布风险提示:5月20日,公司股票价格以跌停价收盘;2024年5月21日,公司股票价格以涨停价收盘。鉴于近期公司股票价格波动较大,可能存在非理性炒作,敬请广大投资者注意二级市场交易风险,理性决策,审慎投资。 值得注意的是,5月21日,据21世纪经济报道发布的消息,曾发布南京化纤股价预测的同花顺用户“Aurora杳马”现身澄清:虽然他在网上对南京化纤进行了评论,但自己并未实盘操作任何南京化纤股票。 而在5月21日晚间接近21点44分,深交所也火速发布发布关于中通客车股票交易情况的通报。 2024年5月21日,中通客车股票价格在公司基本面未明显变化的情况下出现大幅波动。深交所密切监控该股交易情况,同时关注到该股当日股价走势的相关网络信息,立即启动交易核查。 对于上演预测剧情的信息,深交所特别提到,针对相关投资者编造、传播虚假信息,误导其他投资者进行交易,扰乱证券市场的行为,深交所依规对相关账户采取限制交易十五日的监管措施,并将发现的涉嫌违法违规情况移交进一步查处。 网络不是法外之地,任何人在网络上发布涉及证券市场信息都应遵守法律规定,不能随意造谣、误导,破坏市场信息的正常传播,影响市场机制的正常运行。同时提醒广大投资者增强对网络信息的辨识能力,关注投资风险,合规审慎交易。 此前,中通客车也对外表示,公司不存在内幕交易等违规情况。盘后,公司又再度发公告称: 经自查,公司不存在违反信息披露公平披露的情形。公司基本面未发生明显变化情况下出现股价大幅波动,公司敬请广大投资者理性投资,注意风险。 5月21日盘后的龙虎榜数据显示,当天,中通客车上榜营业部席位全天成交1.76亿元,占当日总成交金额比例为19.94%。其中,买入金额为1.17亿元,卖出金额为5890.8万元,合计净买入5795.63万元。 具体来看,机构买入47.66万元,卖出824.13万元,合计净卖出776.47万元。此外,国泰君安证券宜昌珍珠路证券营业部、国泰君安证券咸宁咸宁大道证券营业部分别买入2504.06万元、2198.13万元;中信证券无锡分公司、深股通专用分别卖出1671.47万元、1495.38万元。 5月22日早盘,南京化纤竞价一字跌停;中通客车一度跌超5%,后有所回弹。 来源:界面新闻
阿里巨变,向大公司病开刀
作者 | 潘多拉 阿里年报出炉,致股东信重振旗鼓 3年利润接近腰斩、市值较巅峰期跌7成…… 自我变革一周年,阿里巴巴交上了一份不太令人满意的答卷。 2024财年,阿里收入达9411.68亿元,经调整EBITA利润同比增长12%至1650.28亿元。 据Wind数据统计,过去两三年,阿里扣非归母净利润持续缩水,从2021财年的1505亿元跌至2024财年的800亿元,3年下滑了46.9%。 年报发布当日,阿里港股、美股双双下跌。 截至23日美股收盘,阿里跌2.3%,报80.80美元/股,总市值2058亿美元,相较于2021年6月25日的6195亿美元高位下跌了近70%。 阿里美股股价 与年报一同出炉的还有,蔡崇信、吴泳铭以阿里集团主席与首席执行官的身份发表的第一封联合署名致股东信。 “截至2024年3月31日的过去一个财年,对阿里巴巴来说是一个分水岭。” 在信中,蔡崇信、吴泳铭阐述了新发展阶段“阿里巴巴是谁”、战略取舍,并分享了阿里的发展策略和如何投资未来。 阿里是谁?两大核心业务——电商和云计算。 阿里的战略方向?用户为先、AI。 阿里的经营原则?长期主义、极度专注、目的明确、建立健全的团队激励机制。 资本管理?2024财年,阿里创造了216亿美元的自由现金流,通过返还现金和盈利的增利为股东创造了价值。 未来投资?阿里巴巴将继续投资于两大领域:一是加速核心业务增长,二是保持基础技术的领先和包括AI在内的创新。 “阿里巴巴永远关注未来。”蔡崇信、吴泳铭在股东信中写道,在过去的25年里,阿里巴巴经历了不断成长,也出现了一些“大公司病”的症状,他们同时表达了将积极对“大公司病”开刀、保持创业精神的决心: “在接下来的10年里,我们将再次视自己为一家初创企业,坚守‘让天下没有难做的生意’的使命初心,以创业的精神持续创新。我们将秉持长期主义,为今天而取舍,为明天而投资。” 图源:阿里巴巴 股东信发出后,#阿里宣布对大公司病开刀#冲上微博热搜。 关于阿里如何解决大公司病,引发一众网友热议。有网友表示担忧,“不就是裁员吗”“开刀会不会开人”也有网友提议,减少内耗和汇报,多留住一些踏踏实实干活的员工。 大公司病怎么治? 首先需要搞清楚,何谓“大公司病”? 是开不完的会议?各种各样的汇报方案?又或是故作高深的行业黑话?“对齐颗粒度”“打通底层逻辑”“打好组合拳”“合理优化”…… 当一个公司逐渐发展壮大,随之而来的往往是组织臃肿、决策效率低下、创新不足、人才流失…… 对于大公司病,阿里不是第一次提及。 上个月,马云突然在阿里内网发布题为《致改革 致创新》的帖子。这也是马云退休五年来首次在阿里内网发布长文。 在文章中,马云称,“这一年最核心的变化,不是去追赶KPI,而是认清自己,重回客户价值轨道。我们向大公司病开刀,从一个决策缓慢的组织重新回到效率至上、市场至上,重新让公司变得简单和敏捷。” 对于蔡崇信和吴泳铭组成的新管理层,马云认为,“新的管理层直面问题、直面未来,相信年轻人,对年轻团队充分授权,对于我们要什么,不要什么,做出了果断清晰的取舍。” 马云内网帖子 图源:阿里巴巴内网 在马云看来,阿里因大公司病带来的决策问题,正在被新管理层扭转。 大公司病的病灶往往在于组织设计。 值得一提的是,去年年中,阿里启动了近年来最大的人力制度改革,涉及员工绩效、层级体系等多个核心事项。 其中最重要的变化就是取消了P序列职位层级,改为14-28层级。 阿里微信通知爆料 图源:微博 原P8以上员工走组织任命的形式,不再有职级的晋升和降级,而根据业务规模和团队规模来决定薪资和奖金;14-28级员工工资和奖金不会只与层级挂勾,未来将实现层级和奖金的逐步分离。 要知道,阿里的职称体系一直是互联网行业对标的重要模板。只要对外说“我的职位对应的是阿里的P几”,业内人就能以此来判断一个人的水平。 但不可避免的是,随着公司的发展,这套体系的层级过多,略显臃肿。而此次改革,阿里砍掉P8级以上的职级,推平了内部架构,进一步提升公司内部决策和执行效率。层级减少后,公司调动员工也更加灵活。 除了组织扁平化,阿里还在进一步推动管理年轻化,为企业发展注入更多新鲜血液、创新力量。 去年12月,吴泳铭兼任淘天集团CEO,他还同时担任阿里巴巴集团和淘天集团、云智能集团三项CEO职务。担任淘天集团CEO后,吴泳铭接连提拔了六位年轻管理者接收淘天集团关键业务,并向其直接汇报。 阿里管理团队年轻化的改革正在向更多业务板块延伸。 不过难以忽视的是,阿里的组织重组也伴随着裁员。根据阿里财报,今年一季度阿里就已经减少了14369人,约占阿里总员工数的5%。 对于这样大规模的裁员,阿里方面并没有给出详细解释。这艘庞大的巨轮,似乎只有减重才能继续航行。 拼多多狂飙超车,阿里要怎么赢? 近日,拼多多发布今年一季度财报,实现总营收868.12亿元,同比增长131%;归属于拼多多普通股股东的净利润为279.978亿元,同比增长246%。 这已经是拼多多业绩连续第五个季度超过市场预期。 截至5月23日收盘,拼多多报收147.09美元,涨1.13%,总市值2042.74亿美元,超越阿里巴巴的2012.12亿美元。 图源:东方财富网 前段时间,阿里京东陆续公布了今年一季度业绩。其中,阿里一季度收入2218.74亿元,同比增长7%,归属于普通股股东净利润32.7亿元,同比下降86%; 京东收入2600亿元,同比增长7.0%;归属于公司普通股股东的净利润71亿元,同比增长13.9%。 至此“猫狗拼”一季度业绩已经全部摆上台面,高下立现。拼多多一季度营收、净利高增速表现,完全“碾压”阿里和京东。 那个不起眼的“砍一刀”,如今真成了“老大哥”。又吃了一嘴汽车尾气的阿里,怎么超车? 用户和AI,今年以来被阿里高层反反复复提到的词。马云、蔡崇信、吴泳铭耳提面命,这两个方向阿里必须要吃透。 用户为先,阿里正在狠抓用户体验。最近,阿里程序员把马云20年前旧帖重新公开,为公司全体上下打鸡血。 20年前,马云说,“我坚信一个真正,伟大,杰出的电子商务网站的最大收益者应该是用户,最大的建设者也应该是用户!!!” 20年后,马云说,“回归淘宝、回归用户、回归互联网”“AI时代刚刚到来,一切才刚开始,我们正当其时!” 今年618,已经可以明显感觉到阿里在改、淘宝在改:淘宝网页版升级、APP首页改版、88VIP无限次退货包运费…… 阿里将AI作为改变和加速业务增长的最强大变量。目前阿里已经出台淘宝问问、万相台无界版等多款AI产品,还投资了月之暗面、MiniMax等大模型创业公司。 据年报披露,阿里投资合共约8亿美元购入月之暗面约36%股权。月之暗面目前是AI行业的一大潜力股。 在低谷徘徊的阿里,一边在自我检讨,一边在寻找出路。有人说,知错能改;有人说,积重难返。 对大公司病动刀,只是刮骨去毒的第一步,真正铲除病灶、彻底治愈恐怕还需要等上很久。 下一个十年,“初创企业”阿里会走向何方,让我们拭目以待。
狼性讲话流出、给采销涨薪,京东新举措能缓解刘强东的焦虑吗?
5月27日,京东宣布自2024年7月1日起,通过一年半时间,京东采销年度固定薪酬由16薪提升至20薪,业绩激励上不封顶。 这一涨薪举措在此前京东创始人刘强东一段内部讲话中也被提及。5月24日,一段刘强东开会的视频流出,刘强东在会上表示采销C1到C3的员工都有不同的涨幅,最高能涨100%。宣布涨薪后,刘强东表示"最好的薪酬待遇要给采销,采销是我们战斗的第一线。" 在宣布涨薪举措的同时,刘强东表示公司稳住了下滑势头,各项数据向好,4月的利润远超预期,新季度的战斗热情在点燃。 另一方面,刘强东也回应了京东近期在考勤等方面的调整,要求员工做行业最一流的员工,永远没有办法让大量员工躺着睡大觉。 过去一年半的时间,京东从员工收入、业务架构到整体策略在不断调整,刘强东的最新发言表明,京东的调整仍在继续。 京东求变 除了涨薪,京东近期调整了员工午休时间,推出了禁止代打卡等举措,引发了外界关注。对此,一位知情人士对第一财经表示,调整确有其事。此外,之前考勤问题不会与绩效挂钩,但是如果长期考勤出现问题违反公司规定的话会有对应措施。从口径看,上述调整不像短期,但可能不会持续太久,新规传达到各部门操作的时候有时会变形。 对于员工的工作态度,刘强东在讲话中称," 如果员工每天中午要关灯两个小时睡大觉,还能业绩向好,员工薪酬上涨是不可能的事情。如果业绩好可以不用加班加点,业绩不好但是拼搏的员工公司不会辞退,凡是业绩差而且不拼搏的员工公司一个都不能容忍,会通过各种手段淘汰出局。" 对于生活第一,工作第二的员工,刘强东表示"你没有错,但你不是我们的兄弟。" 除了上述举措,过去一年京东进行了多方面调整。 在2022年双11前后,刘强东曾在内部批评称京东正在丧失低价优势。2023年年初至今,低价策略上,京东相继推出了"百亿补贴""9块9包邮"频道,以及免邮门槛下调等一系列低价举措。直播方面,京东采销直播间在双11总观看人数突破3.8亿。为了进一步出圈,京东还和2024年春节联欢晚会、湖南卫视芒果TV跨年晚会等大型晚会合作。 架构上,2023年年初京东将原有的3C家电事业群一拆为二,将电脑数码、通讯、家电三大事业部,调整为家电家居事业群和电脑通讯事业群。同时,京东物流组织调整成立四大事业部,取消七大区域公司。 此外,2023年以来,京东多次进行了人事调整。去年5月,当时任京东集团CEO的徐雷出于个人原因向公司辞职,CEO一职将由当时京东集团的CFO许冉担任。在去年开始执行低价策略后,京东对于优惠策略等进行了调整。京东去年推出了百亿补贴同时下调了包邮门槛。 此外,京东在今年4月推出刘强东数字人直播,发力内容业务。 对此,艾媒咨询CEO张毅对第一财经表示,涨薪和严格考勤等举措某种程度上表明京东在加强内部管理,加强了薪资和职业吸引力。近一年刘强东对京东的管理和内部核心方面倾注了极大的心血,提升了效率的提升,同时也增强了团队的作战能力,对业绩有所帮助。 新一季度财报显示,一季度京东收入达到2600亿元,同比增长7.0%。一季度,京东在非美国通用会计准则下归属于上市公司普通股股东的净利润为89亿元人民币,同比增长17.2%。 外部挑战 在618来临之前,京东再次开始调整。 张毅认为,刘强东的忧虑是来自于新平台的挑战,京东遇到的问题和阿里有相似之处。行业角度出发,传统电商或者货架电商的创新力不足,企业面临老化问题,员工的思想老化、躺平等情况比比皆是。在此背景下,新型的社交电商例如抖音、快手、小红书甚至视频号等持续发力,对消费者购物信息的获取渠道,乃至上游厂商的营销策略和渠道建设,都产生了非常大的改变。这种改变对于传统电商而言,难以用原有的货架模式去迎接挑战。货架电商的颓势明显,社交电商的发展可以用"势如破竹"来形容。 内容平台的电商业务正在迅速发展。目前,直播电商平台的增速已经远快于传统电商。快手一季度财报显示,电商业务GMV同比增长28.8%达 2881 亿元,第一季度电商月活跃付费用户同比增长 22.4% 至 1.26 亿。供给侧方面,2024年第一季度月活跃商家数量同比增长约70%,主要得益于新入驻商家的持续活跃。 张毅表示,如果仅依靠提高效率和组织内部的整治提升业绩,从长远来看对平台反而不是件好事,因为数据在保持成长的时候,大家反而会迷失方向。京东如果要走出一条可持续的发展道路,需要在创新模式上努力,才能应对来自新型电商的挑战。 对于部分商家而言,目前品牌在内容平台的增长远超于传统平台。 一家成立4年的国产美妆品牌创始人陈林(化名)对第一财经表示,今年一季度,他的品牌在抖音的增速为30%到50%,从整体销量看,去年双11过后品牌抖音的整体销量已经超过了天猫平台,成为贡献销量最多的平台。品牌在2023年年末加入了京东,目前在京东逐步发展。陈林认为,和货架电商不同,抖音的流量属性能够快速地起量。对于即将开始的618大促,陈林表示从扶持力度看,天猫对时尚大类的扶持力度高于京东。 另一位食品类商家也对第一财经表示,从增速看,品牌在传统电商平台的增长已经无法与抖音相比,今年618他将主做抖音的活动。 在不少商家将重心转移至新平台时,也有商家认为京东的变化有效果。 一位体育用品商家对第一财经表示,从活动策划看,京东增加了平台活动机制,包括新增商家超品日、在双11率先取消了预售实施现货销售等,有助于推高商家业绩。尤其明显的是,京东积极拓展流量来源,开始寻求跟商家一起做线下活动联动,试图反哺线上流量。除了商家自办的品牌活动外,也开始通过线下逛展等拉流量促转化。比如今年3月上海上海国际健身展IWF期间,京东健康的采销就主动联系主办方,从直播间直播改为线下逛展,其实都是给商家带流量、促转化的,也能够窥见其实采销之间也在破壁。 此外,该商家表示价格优先后,京东更具有竞争优势。此前,京东图书因为要求出版社低价参加活动引发抵制,对此,京东图书采销员工21晚间在朋友圈作出回应,表示已收到相关出版社发函。该员工表示,出发点是卖更便宜的图书让利给消费者,并通过薄利多销给合作方创造收益。
小红书是时候发力店播了
今年618电商年中大促,直播带货领域出现两个热门话题:超级主播魔力消失,大力投入店播。 有人统计了今年618期间多个平台超级主播动向,发现疯狂小杨哥等多名超级主播要么缺席,要么未能引发多少关注。李佳琦不久前坦言,“今年的618大促难不难?我觉得是难的。” 超级头部主播的话题并不新鲜。从整个直播电商行业发展的视角,各大平台店播的发力其实更值得关注。 据36氪报道,近期小红书电商买手运营业务已与商家运营业务合并,组成电商运营部,核心是“丰富店播供给,形成买手直播和店铺直播并行发展的状态”。 淘宝直播发布的数据显示,618前四个小时,67个店铺直播间成交破千万,小米官方旗舰店成为首个破亿店铺直播间。 小红书发布的618开门红战报显示:商家开播数为去年同期的3.8倍,店播GMV为去年同期4.2倍,“店播已成为商家最强增长引擎”。 直播带货起步之初,达播和店播即已共存。热闹的直播电商行业发展至今,商家和平台均已意识到,两种直播带货方式并行不悖,相辅相成。只有综合加以运用,才能实现最大化价值。 过去两三年,各大互联网内容和电商平台纷纷加大对店播的扶持,引导商家参与其中,店播在直播带货大盘中的占比不断提升。 早在2020年,淘宝直播就曾宣布店播与达播的比例已达1:1;2021年,店播占比进一步提升至70%。抖音店播同样发展迅猛,虎嗅援引知情人士言论称,2022年,抖音商家店播占比接近55%。 不难看出,店播已成为直播带货行业公认的发展方向。 但店播究竟该怎样做,却并未形成标准答案。 各大平台都在积极探索,尝试找到适合自身的发展路径,为商家提供店播方法论,从而率先拿到通往直播带货下半场的船票。 在这场必须参加的考试中,起步较早的抖快、淘宝,作为新势力的小红书、视频号等等,都处于同一起跑线。 店播在直播电商大盘中的占比超越达播,标志着整个直播带货行业进入了下半场。 直播带货兴起的标志是2016年淘宝直播的诞生,这一年也被称为“直播带货元年”。在行业发展早期,李佳琦、薇娅、辛巴等头部主播风生水起,单个直播间每年可实现数百亿元的销售额,带货威力令人咋舌。 但在各个平台的达播烈火烹油、狂飙突进的同时,店播也在高速发展,开播商家数量、订单量和交易额不断攀升。特别是过去两三年,各大平台加大了对店播的扶持力度,商家规模进一步提升,最终让店播反超达播,直播带货行业格局发生根本变化。 尽管拥有李佳琦等顶级带货主播,近年来淘宝一直把店播作为发展重点,去年双十一更是把发展店播作为发力点。2023年双11,淘宝直播GMV首日破亿直播间中,店播占比超70%。 但这并不意味着,各大平台打算以店播取代达播。店播与达播,并非一个硬币的两面。 其核心逻辑在于,店播与达播两种直播形态各有所长,能够满足商家和消费者的不同需求。在一个完整的直播电商生态中,两者缺一不可。 达播的长处在于,借助达人聚拢庞大流量,帮助商家打造爆款单品,快速实现销量爆发。李佳琦等顶级主播的直播间常常“秒空”,一场直播甚至顶得上商家一个月的销量。 此外,能够出现在头部主播的直播间,对于参与品牌的知名度也能快速的拉升,“李佳琦推荐”“董宇辉推荐”等字眼无疑具有更高的吸引力和信任感。过去一年多,在董洁的小红书直播间里,也有多个小众品牌形成破圈。 相比之下,店播更适合充当商家日常经营与长线经营的舞台。 达播带来的密集曝光,让商家有了销售机会;相对应的,商家也需要持续提供更丰富的供给,从而接住“泼天流量”。 通过店播,商家可以更主动地与潜在消费者接触,并介绍更多SKU;还可以引导他们进入私域,为中长期的运营、销售和复购培育土壤。 这一切的发生,基于一个核心转变——电商商家们既要销量、又要利润、还要品牌,唯销量至上时代已经远去。 过去几年新流量红利,催生了一批有爆品却无品牌的商家。看起来销售数字很好,最后扣掉直播间投流费用、扣去运营的成本,反而成了亏钱的一方。到最后,消费者连自己的牌子也没有记住,更别提复购。 这种境遇同样存在于已经成熟的品牌。商家们的解法逐渐也逐渐趋于一致——与主播持续合作,以获得销量的爆发与品牌拓新;开设店播,通过细水长流的店播,更加从容地向来自达播场景的用户介绍理念、传递认知、推介商品,在促进更多SKU动销的同时,积淀粉丝和口碑。 把店播做起来、与达播并驾齐驱,正在成为品牌商家们的共同选择。 618期间,小红书除了发力店播,也向买手提供了大量扶持和激励。平台推出了买手抢位赛和冲刺赛两大玩法,买手完成GMV、累计开播时长等目标后,即可获得奖励。 从发布的数据看,这些举措取得了不错的效果。大促开启后,章小蕙单场直播成交金额再次突破1亿元。 同时发力店播和达播,目的是让两种直播形态形成两条腿走路,或者说是双轮驱动。 无论是体量庞大的淘宝、抖快,还是新势力中的小红书、视频号等,都在朝着“达播+店播”的方向前行。 在一众平台中,今年618表示大力投入店播的是小红书。 这多少有些让人有些出乎意料,甚至有人认为,刚刚通过买手获得出圈的小红书电商,现在发展店播是不是为时过早。 在字母榜(ID: wujicaijing)看来,从直播电商业务的发展节奏,小红书到了发力店播的时间节点。 回到2023年2月底,单场销售突破3000万元的董洁,成为了被全网讨论的头部主播。小红书电商也随之受到关注。紧接着,章小蕙的小红书直播间实现出圈。 董、章被大范围讨论,不仅源于单场销售额,更多来自于她们示范出来的小红书电商主播的风格,娓娓道来,画风精致,选品别具一格。 2023年8月,小红书电商首次整体面向外界发声,举办的大会上提出“买手时代已来”,买手的概念开始被广泛认知,同时也让外界看到了小红书认真做电商的决心和姿态。双十一期间,记者转型的家居买手“一颗KK”累计破亿,同时有多个千万级买手诞生,证明小红书的买手直播确已形成心智。 这为小红书电商在今年大力投入为店播创造了条件。 另一个时机在于,大量电商商家正在进入小红书。 2023年底时,有一个判断在商家中广为流传,“2024年最值得投入的电商平台,一个是视频号,另一个就是小红书。” 据36氪报道,过去一年,小红书电商两个重要行业时尚潮流、家居家具,2023年新商家入驻数分别同比增长超6倍和4倍。 商家的涌入,意味着对于店播会形成巨大需求。同时,完善成熟的店播产品和工具方法论,也是吸引更多商家入驻的关键。 此前的店播,总是存在模仿达播的倾向。反而起步稍晚的小红书,商家店播新意颇多。 字母榜了解到,某小众瓷器品牌此前在小红书开设矩阵号,通过发布图文笔记、短视频等,积累了3万多忠实粉丝;入局直播带货后,月销售额超百万,目标超500万。 这个商家会在每条高热笔记添加群聊组件,引导用户进群,并在群聊中分享直播间链接,带动用户直播互动、完成销售转化。 某假睫毛商家在小红书拥有约15万粉丝,主播在直播间里,会手把手帮助观众选择适合自己的产品,有用户称之为“邻家姐姐式直播”,如今月销售额超百万元。 小红书的店播会是什么样?平台似乎还没有给出一个描述。不过最近36氪报道,引用参与了近期小红书电商店播调研的人士透露,“商家直播间不应是单一的卖场,而是需要耐心讲解、做好服务、与用户形成互动以及丰富的货品,让用户看店播有一种在线下逛一间间门店的感觉。” 之所以如此,是因为小红书的底色是内容社区,这也是小红书电商的建构根基。 得益于电商与社区深度融合,商家无论做达播还是店播,都有机会在拉升销量的同时,积累优质内容、沉淀忠实粉丝,并通过持续经营私域,提升复购率、塑造品牌心智和忠诚度。 小红书用户更青睐基于真实体验的优质内容,不喜欢单纯的吆喝叫卖,为店播版的“娓娓道来直播”提供了土壤。 同时,小红书用户的付费意愿和能力更强,商家能够以较小粉丝量撬动较大GMV,从而让店播重心不再仅仅是引流、转化,而是服务好核心用户,在更长周期内实现动销和利润。 这是小红书店播值得期待的地方。倘使小红书店播形成自己的特色,也为“店播究竟怎么做”的行业难题提供了一种答案。
雷军不讲性价比,但卢伟冰可以
撰文 | 吴先之 编辑 | 王 潘 雷军与小米SU7带走了流量,带不走小米的底色:性价比。 2月3日,雷军发微博称,卢伟冰兼任小米品牌总经理,同时以后小米手机发布会都将由后者主讲。月中小米14Ultra的发布会上,卢伟冰如约登台,完全接过了小米手机的“话筒”。 5月23日,小米发布2024年第一季度财报。截至3月31日,小米实现营收755亿元,同比增长27%。经调净利润65亿元,同比增长101%。造车意味着小米重新步入投入周期,此时保持利润增长,是一件好到不能再好的事情。 截至5月15日,累计交付量达到一万辆,这个交付数据短期无法完全撑起大盘,因此手机仍然是小米眼下最重要的基石。 手机板块形成了国内国外两种截然不同的策略,国内市场方面,主品牌延续高端策略,Redmi延续性价比策略。考虑到去年多个季度国内ASP不断增长,小米旗舰机应有不错表现。反观海外市场则是彻彻底底地打性价比牌,这也导致小米ASP持续下探。 一季度小米手机业务全面回暖,既有行业回暖,东风独宠“卢郎”的因素,同时也受益于海外市场的增长。只是,这种增长或多或少带有“性价比”色彩。 东风已来? 一季度前,小米刚刚完成了一次切换。 2023年年报显示,去年全年,小米手机全球出货量为1.45亿部,超过1亿部进入海外市场,约4500万部在国内市场。这表明,小米在国内市场不断冲高,而国外市场则大打性价比牌。 上个月,市场调研机构IDC与Canalys所发布的今年一季度全球智能手机出货数据显示,全球市场小米登上第三,增量来自海外市场。 到今年情况发生了些许变化。 前四个月,国内市场复苏,尤其是线上渠道重新步入增长周期。据Sandalwood紫檀数据电商监测数据显示,2024年开年中国电商市场手机品类大盘稳步增长,前四个月销量同比增长10%,同比增速达到两位数水平。国内快速增长的线上市场,是拉动小米手机销量的核心动能。 上述机构提到,具体到今年国内前四个月数据来看,小米品牌的均价逐步提升,米14系列已成为高端市场中具有较强竞争力的旗舰产品线之一,从电商数据来看,14系列销售水平超越11系列,创下新高。小米整体的量价表现持续稳步提升。 这股东风显然让依赖线上渠道的小米,在国内出货量上有了更好的表现。截至一季度,小米全球出货量为4060万部,同比增长33.7%。简言之,国内手机市场回暖+线上渠道增长,共同助推小米手机出货量增长。 量增的背后是价跌,尤其是小米一直以来希望甩掉“性价比”的帽子,冲击高端。尽管出货数据靓丽,但此前导致小米ASP一路下行。今年一季度,小米手机ASP为1144.7元,同比略微下滑0.6%,已连续三个季度下滑。 2022年第三季度至今的七个季度中,小米在财报中都曾用类似的文字解释国内外市场手机ASP的变化情况:国外ASP下滑,国内ASP增长对冲。本季度,财报提到,国内外ASP皆有回升,不过由于ASP更低的境外市场收入占比增加。要不是一季度国内市场回暖,小米ASP的跌幅可能会更大。 财报中没有说的事情是,在性价比的基础上冲高,会产生大量库存。自2020年冲高元年开始,小米库存持续走高,这一境况直到2022年第三季度开始转变,这也恰好是小米发力海外市场的起点。 在东南亚、印度、南美、非洲等市场,小米的核心和产品皆为入门级产品。例如小米今年在印度市场子品牌POCO发布的两款新机X6与X6 Pro,实际上是国内的高通版Redmi Note 13 5G与Redmi K70E。Redmi Note 13系列尽管产品力不错,但由于前者堆料很足,核心零部件拉不开代际差距,因而销量很难超越之前的Note 12 Turbo。 天玑6080与骁龙7+还是存在些许距离。 除此之外,小米进入非洲与拉美市场的“敲门砖”同样是入门级产品Redmi 13C。这款100美元的成熟产品,能够给到当地移动运营商充分运作空间,得以搅动当地市场——这一方法与传音的扩张逻辑大差不差。 雷军该如何说服米粉掏钱? 分业务看,小米一季报没有太多可挑剔之处。尤其是手机业务收入规模和增速让人想到了2021年的高光时刻。IoT、互联网广告收入增速也都实现两位数增长。 截至一季度,小米手机收入465亿元,同比增长33%;IoT收入204亿元,同比增长21%;互联网服务收入80亿元,同比增长15%。收入增长,毛利也维持在较高水平,三大业务依次为14.8%、19.9%、74.2%。 我们前文提到,小米增长主要受国内市场回暖影响,而更具体的原因其实来自米粉。2020年开启高端化以来,米粉复购率处于震荡之中,到2022年开始震荡上行,到今年一季度,复购率来到75%,创在近年新高。 这表明面对华为与苹果不断刷新价格上线之际,冲击高端的小米,仍然维持着“感人”的价格,反而获得了相对的“性价比”优势,从而重新拉回了米粉的关注。例如日前,小米14突然直降618元,配合线上大促,继续走量的心思已经非常明显。 电商大促一直是小米最为重视的营销节点,品牌促销+平台补贴,很容易打开消费者的钱包里。以目前618为例,14Ultra 16+256G配置在官方店的价格与发售时无二,但第三方商家价格甚至已破5500元。有渠道商告诉光子星球,按照往年情况,618结束后,可能还会继续破价换量。 “618靠渠道商拉动销,618后得靠实打实的价格,否则等到下半年,消费者的注意力已经放在下一代新机上了。”日前,小米数字旗舰系列国行新机小米15、小米15Pro、小米15Pro钛金属卫星通信版已经入网。 性价比有利于量,而不利于质,其带来的真正问题并非压低利润空间。事实上,过去几年,小米手机ASP持续下探的同时,毛利却长期处于上涨通道中,自2020年一季度的8.1%,涨到了今年一季度的14.8%。 唯一能够解释的,只有小米国内外分工明确的产品思路:国内上新卷产品,国外低价去库存。 真正得让雷军头疼的问题是,自家米粉的单位购买力正在持续衰减,这对小米手机、IoT、汽车“人车家全生态”来说并非好事,甚至会影响到小米汽车的后劲。 今年一季度,小米手机月活人均消费70.7元,IoT月活人均消费31元,互联网服务人均消费12.2元。季度内,小米月活用户在生态内的人均总消费113.9元,这个价格相当于百度网盘+腾讯音乐季度会员的价格。而在2020年,这一数据是156.9元,同期百度网盘+腾讯音乐季度会员价格还不到90元。 眼下,AI与大模型或许能为小米提供一个逆天改名的机会。端侧大模型将改变传统的人机交互模式,也将增加手机在智能硬件生态中的权重。据了解,一季度小米已接入百度文心一言。 海外去库存的策略,到底能否将之转变为生态消费力,还得持续观察,目前难以定论。当下印度、东南亚、南美、非洲的IoT市场还处于早期阶段,分散且用户心智尚未建立,小米可能需要在上述区域重走一遍国内走过的路。 靠米粉不如靠东哥 618前,小米与京东达成战略合作,根据官方信息可知两个核心要点,一个是未来三年小米在京东全渠道销售额2000亿,另一个是深化合作。 未来三年2000亿元实际上是签了一个价值2000亿元的包销协议,这部分主要涉及到预付款、最低价等内容。所谓深化合作,实际上是京东进一步将之转化为营销、仓储、履约、数字化,以及金融等自身生态的客户。 去年,小米曾在内部成立了一个由CFO牵头的“降本增效专项组”,希望持续改善业绩与内部增效。过去几年,小米一直在压缩成本应对手机寒冬,这一策略已触及边际,最近两个季度呈加速反弹态势。借助新的包销协议,寻求外援,则是上述调整的延续。 在米粉购买力持续走低的情况下,向京东借力不失为一个很好的策略。这相比于下场做短剧、拓展白电与日用杂货SKU更为务实。 雷军接下来需要想一想,小米生态越来越难以提升每一位米粉的消费力时,小米汽车只能向其他用户要增量。在车手互联的大背景下,拿着“菊花”品牌样式的手机用户很难成为小米汽车的拥趸,那么小米又如何拿几十万的车“感动”其他用户呢?
小米Q1财报解读:43天交付1万辆新车,小米带来中国新能源汽车新叙事
5月23日,小米集团(HK01810)交出Xiaomi SU7系列发布后的第一份业绩答卷。 2024年第一季度,小米集团营收人民币755亿元,同比增长27%。经调整净利润达人民币65亿元(包括智能电动汽车等创新业务费用人民币23亿元),同比增长100.8%,创单季历史新高,业绩增速步入快车道。 主营业务智能手机业务、IoT与生活消费品业务、互联网业务在Q1均实现双位数增长,收入分别为人民币465亿元、204亿元和80亿元。 一季度汽车业务以亮眼的首战业绩首次亮相小米财报——汽车发布首月交付7058台,截至4月30日锁单88063台,超过市场预期。6月交付目标将超1万辆,年度交付目标超10万辆。 随着智能手机高端化水平提升,IoT与生活消费品毛利率大幅提升,「人车家全生态」战略全面落地,小米正进入全新的发展快车道。 小米带来中国新能源汽车新叙事 财报披露的数据显示,Xiaomi SU7系列在发布后43天就完成了10000辆新车交付。小米集团在财报中表示:“我们的目标是,2024年6月,Xiaomi SU7系列单月新车交付量超过一万辆。” Xiaomi SU7的“现象级”成功,让小米以新的姿态再次刷新了大众对中国智造、产业生态的理解。中国新能源车的新叙事也由此展开。 2023年,中国汽车产销量首次双双突破3000万,连续15年稳居全球第一,中国新能源汽车内卷加剧,卷配置、卷价格,市场竞争进入白热化。随着汽车保有量快速增长,唱衰新能源汽车的声音不断涌现。 半路杀出的Xiaomi SU7用数据打破了唱衰行业的基调。 在生产节奏上,按照传统车企的节奏,一款新车从正式下线到产量破万需要经历6个月左右的爬坡期,小米汽车将这个周期压缩到了一个月左右,刷新了车圈交付纪录。 在交付量上,截至4月30日,小米SU7锁单量达88063辆,创下了业内新品牌首款车型上市首月的交付量新纪录。 在交付速度上,截至5月15日,完成了第10000辆小米SU7的交付,首车交付速度再次刷新行业纪录,展现了其产能之强大与供应链运行效率之高。 在门店渠道上,小米计划到2024年年底,小米汽车的销售服务网络将达到219家销售门店,覆盖46个城市。143家服务中心,覆盖86个城市,基本覆盖中国大陆地区所有省份(包括自治区和直辖市)。 在研发投入上,小米汽车招募了超3400名工程师,SU7的研发投入超100亿元,小米集团研发人员总数接近18000人,截至2024年3月31日,拥有全球专利数超39000件。2022年—2026年,小米公司5年研发的总投入计划超1000亿元。 当下新能源汽车市场各家厂商的角逐,不仅是产品之间的比拼,更是资金、资源整合能力、供应链能力等综合实力。而作为后起之秀小米为什么能成为令消费者信服的“造好车”企业? 主营业务超强吸金能力,是小米集团能投入大量资本进入造车领域的根基。第一季度,经调整净利润创单季历史新高,达人民币65亿元,同比增长100.8%,远超市场预期。公司本季度营收人民币755亿元,同比增长27%。 作为小米三大基本盘业务,小米智能手机业务、IoT与生活消费品业务、互联网业务在Q1均实现双位数增长,收入分别为人民币465亿元、204亿元和80亿元。“现金牛”业务的稳健增长和超强的现金储备,给了小米汽车“最大底气”。 除此之外,截至2024年3月31日,小米现金储备达人民币1273亿元。 分析人士指出,充足的现金储备可以让小米汽车不受短期盈利压力影响,心无旁骛地专注产品性能打磨,持续强化小米汽车的核心竞争力。 据了解,为实现“上市即交付,交付即上量”的目标,小米正加速扩产能、保交付。据小米业绩媒体电话会透露,小米汽车工厂6月将开启双班,全力扩充产能,2024全年新车交付目标冲刺120000辆。 高端化战略与用户需求双向奔赴 卢伟冰称,截至4月23日的用户中,女性购买用户占28%,但女性车主的比例实际有40%~50%。而BBA用户占到了29%,苹果用户占到了52.5%,这些数据也充分展现了小米SU7的广泛吸引力和市场竞争力。 新能源汽车经过多年的野蛮生长,消费者对体验的需求早就不只是尝鲜,而是在品质的基础上加入更多高端化、智能化、个性化需求,而小米汽车之所以能出圈,主要归功于小米对用户需求的精准捕捉。 成功的产品定位使得小米首款电动智能汽车“出道即爆款”。从销量来看,作为一款定位于“C级高性能生态科技轿车”的全能型产品,想要获得高端用户圈层的青睐。颜值、性能、配置成为衡量的关键指标。 外观设计方面,小米SU7展现出了强烈的科技感和未来感。车身侧面的线条流畅,整体造型动感十足,彰显出年轻、活力的特质,拥有极高的颜值。内部空间也充分考虑用户收纳需求,且整车玻璃通透好看,同时做到防晒隔热,这些细节的贴心设计,使小米SU7快速收获女性用户的青睐。 性能方面,无论是加速还是续航,小米SU7表现毫不逊色。动力方面,单电机版最大功率299马力,0-100km/h加速时间5.28秒;双电机版最大功率为673马力,峰值扭矩838牛·米,0-100km/h加速时间2.78秒,这个速度超过了市面上绝大多数竞品,性能比肩百万级别超跑。 智驾方面,小米智能驾驶坚持全栈自研,实车累计测试 1000万公里,小米 SU7全系标配智能辅助驾驶、上市即交付高速领航(高速NOA)。小米在智能驾驶领域实现端到端大模型技术在国内的首次量产,端到端大模型取代了此前用于感知、决策、规划的多个模块,让智能驾驶直接从一端输入图像,一端输出行驶轨迹,小米端到端大模型是迄今类人思考程度最深的智驾算法,已经实现5cm精度的极窄库位泊入和23km/h巡航的代客泊车。 智能座舱方面,小米SU7带来了集先进智能科技于大成的澎湃智能座舱。小米澎湃智能座舱在设计之初就将手机、平板视为座舱的一部分,实现多端一体化原生设计,同时,基于小米澎湃OS强大的跨端互联能力,实现「人车家全生态」完整闭环。此外,月活用户 1.17 亿的智能语音助手小爱同学上车,可实现如连续对话、离线对话、高噪唤醒、一句话多指令等多项远超行业的语音交互功能。 可小米汽车凭借强大的产品力,显著提升了小米汽车ASP,打响了小米汽车高端化的第一战,成功建立起用户对小米汽车高端品牌的认知。 「人车家全生态」开拓全新增长空间 小米SU7大卖也带动了小米手机、平板以及手机支架、机械按键、对讲机、香氛机等周边的销量增长。 日前,小米集团总裁卢伟冰发布微博表示:“小米手机父母在看车,小朋友在玩手机/平板,「人车家全生态」闭环。走访市场,很多看/买SU7的用户也同时买了小米手机(前期没用小米/红米产品)”。 「人车家全生态」可以理解为给用户提供全场景智能生活解决方案——在“人”方面,小米以智能手机、智能穿戴设备等为核心,为用户提供个性化、便捷化的智能生活服务;在“车”方面,小米构建车内智能生态系统,使汽车成为移动的生活空间和智能终端;在“家”方面,小米智能家居产品已涵盖生活的各个方面,形成完整的智能家庭解决方案。 从门店情况和财报数据来看,小米汽车的高热度为线下门店带来大规模客流,增大了生态链产品曝光及选购率,带动智能家居产品销量及小米注册用户数的增长,生态业务联动效应显著。 小米汽车的首战告捷,也验证了小米“人车家全生态”战略方向的正确性。“小米汽车的上市意味着小米「人车家全生态」闭环全面形成,也标志着小米集团形成‘基本盘业务+汽车’双轮发展的格局。”汽车行业分析师表示。 在最受关注的智能驾驶领域,小米坚持技术全栈自研,采用了包含了道路大模型、超分占用网络和变焦BEV等领先算法的先进架构,实现端到端大模型技术在国内的首次量产。目前,小米智驾团规模超千人,目标是今年进入行业第一阵营。实车累计路测超1000万公里,投入测试车辆超300辆。小米智能辅助驾驶预计2024年5月底在中国大陆10个城市开通城市NOA,8月完成中国大陆全面开通城市领航。 资本市场对小米汽车的未来发展预期颇为乐观。摩根士丹利、花旗、里昂证券等都在相关公司研究中,提出了小米汽车销量持续上涨的观点。据悉,下一步小米将在SU7在交付、服务和OTA上将全面加速。 综上,从集团内部看,小米汽车无疑将成长为小米集团又一业绩增长新引擎。从新能源汽车的市场格局来看,新老玩家层出不穷,但作为同时具有手机生态、AI、产业链投资等智能车基础的企业,小米汽车将从生态融合、核心技术、出海能力引领中国新能源车走向更高台阶。
巴西老铁不爱TikTok
作者丨古廿 编辑丨伊页 快手打不过抖音的宿命,可能正在海外的巴西被打破。 目前,快手的巴西版本Kwai,在当地的月活用户规模已经超过6000万,相当于巴西30%的人口。Kwai 在去年超过70分钟的用户日均使用时长,已经使其成为巴西人民的头号杀时间应用,助力巴西群众摇身变为“老铁666”。 反观抖音的出海,TikTok一方面遭遇美国市场封杀,在其他海外市场重复上演的风险隐患已经埋下;另一方面,巴西作为任何一家企业全球化不容错过的大市场,在用户增长和商业化进展方面,TikTok均出现大幅被后来者Kwai赶超的迹象。 把时光倒退到2021年初,对于海外市场的表现,有快手国际化业务的员工说:“如果在巴西和印尼,快手产品的用户量能和 TikTok 五五开,就算快手打赢了,甚至四六开都行”。这种彼时看起来颇为消极的悲观态度,如今看来更像是认清现实差距后,找准差异化打法逆袭成功。 快手在巴西市场的增长成功,可以总结为本土化、商业化两个飞轮的叠加效应。 快手在出海早期,海外团队并不是在当地办公,而在北京总部办公。这直接导致了出海的团队缺乏与当地市场的一线沟通,以及对当地文化风俗的认知。而Tik Tok在全球各个市场建立了本地办公室,聘请了大量的当地员工和留学生。 由此带来的差距,让快手开始打响内部著名的K3战役,主要目的就是在2020年春节之前,达到3亿日活跃用户。为了达到这个目标,快手的海外业务重新起航,大力进行海外招聘,包括技术、产品、设计、审核等大量岗位。在巴西后来居上的快手,也迎来了意外收获。2019年9月,Kwai的DAU突破300万,其在当地的表现远远优于宿敌Tik Tok。 本土化办公只是一个侧面,更重要的还是差异化的本土化内容。TikTok的内容运营策略主要以欧美年轻人为主,在全球富人经济区深具影响力;快手在海外瞄准的则是穷人经济区,巴西的网络发展水平,和五年前中国的下沉市场有些类似且潜力巨大。 另外在本土广告合作、赛事赞助方面,快手更是围绕着巴西人民比较关注体育赛事大做文章,力求让Kwai持续活跃在人们的视线里。 用户增长、内容策略只是流量侧,商业化的变现才让快手的巴西市场完成出海业务闭环。2023年第四季度,快手海外业务线上营销收入同比增长超过300%,商业化的打通也意味着快手真正实现了本土化经营。 不过在巴西这个炙手可热的新兴经济体市场,快手要面对的强敌远不止TikTok一个,商业化上就要面对来自本土传统电商平台Mercado Libre的竞争压力。后者的活跃独立用户增长了92.2%达到7610万,在拉美的地位犹如淘宝之于国内市场。 另外不少中资背景的企业先后进入巴西,比如先后布局的极兔和Shein等等,到底是合作伙伴还是竞争对手,快手也需要通过本土化的竞争视角去取舍。 正如此前快手国际化负责人马宏彬给商业化团队提出的要求:把更多的时间放在当地,只在西二旗做不好出海业务的本地化。不管是流量轮还是现金轮的叠加,本土化才是快手奇袭全球化标准下的TikTok的新武器。
晶圆代工业,Q1战况如何?
2023年受供应链库存高企、全球经济疲弱,以及市场复苏缓慢影响,晶圆代工产业处于下行周期。不过,自2023年Q4以来,受益于智能手机市场需求回暖所带动的相关芯片需求的增长,包括中低端智能手机AP与周边PMIC,以及苹果iPhone 15系列出货旺季带动A17芯片、OLED DDI、CIS、PMIC等芯片需求增长,晶圆代工市场也随之开始出现转机。 在经历Q4的逐步回暖后,全球半导体市场正变得更加活跃。具体看看,今年Q1晶圆代工市场都有哪些好迹象发生。 01 晶圆代工市场,开始复苏 AI热火朝天、存储强势复苏,两主线驱动销售增长 首先从需求角度来看,AI和HPC的需求增长是晶圆代工市场的主要驱动力。(这一点在下文台积电的财报中可以体现。) 根据研究机构Omdia发布报告称,全球半导体供应链在最近几个季度进行了战略性库存调整,预计2024年全行业产值将达到6000亿美元。企业越来越多地利用人工智能推动整个供应链需求增长,预计半导体行业将迎来充满希望的发展轨迹。 Omdia预测,2024年全球纯晶圆代工行业收入将增长16.4%。此外,AI加速器领域的市场规模将在2024~2027年保持增长,2025年该领域市场规模将超过1500亿美元。 此外,存储市场的强劲复苏也为晶圆代工市场提供了稳定的订单来源。 产能增长 产能可以作为全球半导体市场活跃指数的主要观测指标之一。过去一年来,市场去库存的基调明显,随着时间步入2024年,生成式AI和HPC等应用推动着芯片在终端侧需求的复苏,导致先进制程和晶圆代工产能加速扩增。 根据SEMI公布的2024年全球晶圆厂预测报告显示,继2023年以5.5%增长率至每月2960万片晶圆之后,全球半导体产能预计2024年将增长6.4%,突破每月3000万片大关。 其中,中国2024年晶圆产能将以13%的增长率居全球之冠。报告指出,在政府和其他激励措施推动下,预期中国大陆地区将扩大在全球半导体产能中的占比,全年新投产18座新晶圆厂,产能增长率将从2023年的12%增至2024年的13%,每月产能将从760万片增长至860万片。 同时,受益于中国大陆的拉动,中国台湾地区的半导体产业链也将受惠,预计其产能将维持在全球第二的位置,2023年和2024年的年增长率分别为5.6%、4.2%,每月产能由540万片增长至570万片,预计自2024年起将有5座新晶圆厂投产。 此外,根据SEMI最新发布的全球晶圆预测报告显示,2022年至2024年,全球半导体产业计划有82座新厂投产。 从厂商动态来看,台积电正计划在美国亚利桑那州建造第三座芯片厂,预计将创造更大的规模经济。同时,中芯国际也在提升其产能,以应对市场需求的增长。华虹半导体公司总裁兼执行董事唐均君也表示“公司的第一条12英寸生产线今年全年将在月产能9.45万片的基础上运行,第二条12英寸生产线也正在建设过程中,预计将于年底建成投产。” 作为全球半导体市场活跃指数的主要观测指标,产能的提振也宣告市场正在走出持续一年多的低迷期。 根据研究机构TrendForce集邦咨询的数据,2023年第四季度全球前十大晶圆代工厂商营收季增7.9%,总额达到304.9亿美元,这一增长势头为整个行业带来了积极的预期。那么,在2024年Q1这些厂商表现如何呢? 02 晶圆代工厂商,Q1战况如何? AI芯片给台积电业绩带来明显提振 截至2024年3 月31日,台积电第一季度合并收入为1324.55 亿人民币,同比增长 16.5%,环比下降 5.3%;净利润为503.97亿人民币,同比增长 8.9%,环比下降 5.5%。第一季度营业利润556.56亿人民币,同比增长 7.7%,预估538.34亿人民币;第一季度毛利率 53.1%,预估 53%。 先进制程依旧是台积电Q1最为主要的营收来源,财报数据显示,该公司第一季度3nm出货量占晶圆总收入的9%,5nm占37%,7nm占19%。先进制程(即7nm及更先进的制程)占晶圆总收入的65%,即约3852.2亿新台币。 值得注意的是2023年Q4,台积电3nm、5nm和7nm制程分别占晶圆总收入的15%、35%、17%,先进制程占晶圆总收入的比重达到了67%。2023年Q3,3nm首次贡献收入,3nm、5nm和7nm制程分别占晶圆总收入的6%、37%、16%。横向对比可以发现,3nm制程占台积电总营收的比重在今年Q1出现下降,而这一制程中苹果是台积电最大的客户。 根据IDC报告显示,2024年第一季度,全球智能手机出货量的格局发生了显著变化,iPhone的出货量为5010万台,较去年同期下滑9.6%,跌幅系同类主流手机品牌中最大。出货量的减少进而导致苹果的3nm订单疲软。 摩根士丹利分析师Charlie Chan在3月7日的报告中指出,今年1-2月,台积电营收增长9.4%,这主要得益于人工智能对高端芯片的需求,从而抵消了iPhone销售放缓的潜在影响。这在一定程度上也意味着,人工智能芯片的需求已经超过苹果成为拉动台积电先进制程订单的“第一动力”。 受半导体周期影响,格芯Q1业绩多项指标不振 格芯Q1实现营收 15.49 亿美元,环比、同比均下降 16%;毛利润为 3.93 亿美元,相较 2023 年四季度的 5.25 亿美元大减 25%,同比也下滑了 24%;毛利率为25.4%,相较之前约 28% 的水平有所降低;净利润为 1.34 亿美元,同比、环比均下跌约一半;净利润率为8.7%,明显低于 2023 年四季度的 15%。 格芯在一季度实现 46.3 万片 12 英寸晶圆当量出货,同比下降 9%,环比下降 16%。格芯在Q1还获得了两笔补贴:除美国《芯片与科学法案》承诺的 15 亿美元直接资助外,还有纽约州政府超过 6 亿美元的地方财政支持。 半导体行业仍未走出库存调整的阴影,格芯在今年Q1业绩和净利润均有所下滑,不过格芯总裁兼 CEO 托马斯・考菲尔德(Thomas Caulfield)表示:“在第一季度,格芯遍布全球的专业团队取得了超出此前 2 月公布的财报指引范围上限的业绩。” 联电预警汽车和工业芯片需求依然疲软 联电Q1营收17.1亿美元,同比增长0.8%,较市场预期高出7000万美元;净利润为3.27亿美元,以新台币计算同比降低35.4%;摊薄后每股收益为0.13美元,不及市场预期的0.15美元。 联电第一季度晶圆出货量环比增长 4.5% 至 81 万片;预计第二季度晶圆出货量将以低个位数百分比增长。联华电子在第一季度财报中表示,本季度计算、消费和通信领域的库存状况正在改善至更健康的水平,这将带来晶圆出货量的增长。但该公司表示,汽车和工业领域的需求依然低迷。 2023年Q4联电晶圆制造产能利用率为66%,2024年Q1整体利用率略微下滑,为65%,预计第二季度整体利用率在60%左右。 中芯国际季度营收首次超越联电与格芯 中芯国际Q1 营收 17.5 亿美元,去年同期 14.62 亿美元,同比增长 19.7%,环比增长 4.3%。第一季度净利润7180万美元,同比下降68.9%。第一季毛利为2.397亿美元,去年同期为3.047亿美元。中芯国际2024年第一季毛利率为13.7%,2023年第四季为16.4%,2023年第一季为20.8%。 中芯国际表示,期内净利润下滑主要是由于产品组合变动、折旧增加及投资收益减少所致。 从应用分类来看,智能手机业务为中芯国际带来了31.2%的收入,是公司的主要收入来源。其他业务领域,如计算机与平板、消费电子、互联与可穿戴以及工业与汽车,分别贡献了17.5%、30.9%、13.2%和7.2%的收入。 按晶圆尺寸分类,一季度12英寸晶圆营收占比为75.6%,8英寸晶圆营收占比为24.4%。从产能方面来看,中芯国际月产能由2023年第四季度的80.55万片8英寸晶圆约当量增加至2024年第一季度的81.45万片8英寸晶圆约当量。Q1产能利用率提升至80.8%。 中芯国际的管理团队表示,一季度全球客户的备货意愿有所上升,推动了公司销售收入环比增长4.3%。同时,公司出货了179万片8英寸当量晶圆,环比增长7%,产能利用率也提升了四个百分点,达到了80.8%。展望未来,中芯国际预计二季度的收入将环比增长5%~7%。随着产能规模的扩大,公司的折旧成本将逐季上升,预计二季度毛利率将在9%到11%之间。 值得一提的是,这也是中芯国际的季度营收首次超越联电与格芯两家国际大厂。这也意味着,在今年的纯晶圆代工领域中,中芯国际已经暂时成为仅次于台积电的第二大纯晶圆代工厂。 华虹暂受市况影响,特色工艺的市场需求总体向好 华虹半导体第一季度实现营收约4.6亿美元,同比下降27.1%,但环比增加1%。净利润3180万美元,同比大幅下降79.1%,环比下降10.1%。毛利率达到6.4%,略高于预期。尽管面临挑战,公司强调产能利用率提升,预计二季度营收约在4.7亿美元至5亿美元之间,毛利率约在6%至10%之间。 华虹半导体总裁兼执行董事唐均君针对业绩评论称,整体半导体市场的景气尚未摆脱低迷,且由于季节性和年度维修的影响,第一季度是代工企业的传统淡季,但华虹半导体第一季度的产能利用率、销售收入、毛利率均实现环比提升,验证了公司特色工艺的市场需求总体向好。 华虹半导体第一条12英寸生产线今年全年将在月产能 9.45万片的基础上运行,第二条12英寸生产线也正在建设过程中,预计将于年底建成投产。华虹半导体财报显示,Q1来自8英寸晶圆的营收为2.4亿美元,来自12英寸晶圆的营收为2.2亿美元。 03 结语 综上所述,2024年第一季度的晶圆代工市场展现出明显的复苏迹象,主要厂商的表现普遍强劲。从中芯国际、华虹半导体等公司的财报数据可以看出,销售收入均实现了同比增长和环比增长,这显示出市场需求的回暖。特别是AI和高性能计算(HPC)芯片需求的增长,成为推动晶圆代工市场复苏的主要动力,这透露出市场需求的回暖。中芯国际等公司的产能利用率提升至80.8%,这也进一步证明了市场需求的增长。产能利用率的提升、技术创新的推动以及竞争格局的变化等关键信息。同时,也预示着晶圆代工市场在未来将继续保持稳定增长,并呈现出良好的发展势头。 晶圆代工市场的技术发展具有显著的特点,制程工艺不断升级,新材料的应用推动了晶圆代工技术的发展。这些技术创新的推动,不仅提升了产品的性能和竞争力,也为晶圆代工市场带来了新的增长点。 据最新的市场数据,台积电在全球晶圆代工市场中继续保持着领先地位,市场份额占据了市场的一半以上。而中芯国际的季度营收首次超越联电与格芯两家国际大厂,显示出中国大陆晶圆代工企业在全球市场的竞争力不断提升。这也意味着,晶圆代工市场的竞争格局正在发生变化,中国大陆企业正在逐渐崭露头角。
字节掀桌,和BAT赌明天
价格战在中国,从来都是最熟悉、最痛苦,也终究是无可回避的情节。短短10天时间,一度选择“等等看”的字节,猝不及防地打出“低价”王炸,将大模型战火拉进了下一序列。 5月15日,在字节跳动“FORCE原动力大会”上,跳过介绍和过渡,火山引擎总裁谭待一步到位亮出了“豆包”的最新价格:0.0008元/千Tokens,宣布这是低于行业99.3%的“地板价”。 他同时高调向阿里和百度喊话:此次是主力模型降价,不是用小模型降价来混淆视听。“很遗憾阿里和百度还没有128k可精调的模型,但我期待他们的更新。” ▲(谭待于2024“FOECE大会”。图源/火山引擎) 「市界」从多方了解,阿里、百度、腾讯等头部玩家对字节的这次出击缺少准备;各方虽感无奈,也只能被动追随。 5月21日,阿里云宣布:旗下多款大模型的推理输入token降价,降价幅度为67%-97%。同日,百度文心大模型旗下两款模型ENIRE Speed、ENIRE Lite宣布免费。5月22日,腾讯云宣布,旗下多款大模型推理输入token降价,降价幅度为50%-87.5%。 站在行业层面看,某种程度上大模型的价格战终不可避免。一方面,推理算力价格的不断降低构成了价格战基础;而生成式大模型发展仍处于早期阶段,各家差距尚不明显。同时,卷应用、卷生态的蓝海正在展开,云厂商的降价,将吸引更多开发者、商户共同做大蛋糕。 不过相比于大厂的高调作战,「市界」接触的大模型开发者、创业者们多数表现平淡。虽然他们相信:价格战会打消一部分AI成本顾虑,但更多人认为,大厂降价开源的多是小模型,使用起来也有许多限制,降价远没有那么货真价实。 01、“鲶鱼”字节 许多人没猜到,价格战的发起者,会是云厂商巨头里对大模型布局最为滞后与暧昧的字节。 2023年4月,字节跳动火山引擎总裁谭待在与包括「市界」在内的媒体沟通中,曾言之凿凿地表示:“火山引擎自己是不做大模型的,我们做的是服务好大模型创业的公司。字节跳动未来如果推出基础大模型,将会是火山引擎客户之一。” 在去年“百模大战”角逐中,字节一度选择“佛系”跟随。2023年3月、4月,百度文心一言、阿里通义千问先后公布。而字节到了2023年8月,才上线了AI聊天机器人“豆包”。 动作偏“慢”的背后,字节入局云市场较晚、技术与客户储备较弱是原因之一。 一方面,2021年才正式做云的火山引擎在巨头云厂商里,是“最年轻”的一朵。做云三年多来,火山云一直被视为挑战者角色,尚未进入中国云市场份额前五强。 据媒体报道:在2024年1月召开的字节跳动年度全员会上,字节跳动 CEO梁汝波曾提到:公司直到 2023年才开始讨论GPT,而业内做得比较好的大模型创业公司都是在2018年至2021年创立。 但最终字节从低调观望,到主动出击,“转变”或来自于两方面原因:其一,市场经过一年酝酿,竞争逐渐从底层算力训练,进入到了模型优化层的推理算力比拼。对于算力“卡脖子”问题,国内市场也逐渐找到了通过调整模型结构,以降低推理成本的办法——如采用MoE(Mixture of Experts)混合模型架构等策略。 目前,虽然用于算力训练的高端芯片仍然紧缺,但用于优化模型的、相对低端的推理算力芯片,供应已比较充足——这让降价也变得有条件发生。 同时,阿里等玩家的积极出击,或也不断给字节带去了扰动和求变的决心。 近日据“腾讯科技”报道,2023年年中,字节曾在市场上寻觅大模型投资标的。但在几乎与创企MiniMax达成协议的关口,字节突然临场反悔,决定“要么自己做,要么收购一家公司”。 站在集团层面,押注大模型还有更加现实的意义。2024年,TikTok海外市场深陷风暴眼中,字节对站上新风口的渴求尤为迫切;外界也将字节在大模型上的密集动作描述为“寻找下一个TikTok”。 进入2023年底,字节的AI布局陡然提速。据“凤凰科技”报道,字节正式组建了Flow部门,专注于AI大模型的应用研发。2024年3月,飞书产品副总裁齐俊元调至Flow部门,主要负责豆包的PC端业务。2024年4月,历任今日头条CEO以及TikTok产品技术负责人的朱文佳开始整体负责字节AI业务,向梁汝波汇报。 一位知情人士向「市界」透露:一旦下定决心,字节就确立了“全面横向对标”的大模型战略,在应用层、连接层、技术层,都不愿放过。换句话说,市场中已有的整条大模型产业链,几乎全被字节视为“敌人”。 虽然身位落后,字节也有大模型必需的两大利器:算力与流量。据“晚点Latepost”报道,2023年春节后,字节曾“抢购”了超10亿美元的英伟达GPU。 而一旦抖音助力,字节亦有能力快速抬高任何产品的用户大盘。2023年底,据媒体多方统计,豆包的月活用户还远逊于文心一言和通义千问。而到今年3月前后,据QuestMobile最新报告显示:2024年3月,“豆包”App月活用户为2328.2万,在AIGC类应用中排名第一——这自然离不开字节的庞大流量池扶持。 02、阿里、百度、腾讯各怀心事 字节突然下场,改写了游戏规则;对阿里、百度等领跑者来说,“低价”的标签不容这样轻易地被夺走。 5月15日字节发动价格战后,市场一度沉寂数日——某种程度上,大家在等待头号玩家阿里的表态。从2023年以来,阿里在云计算市场上,一直表现为寸土必争。其大模型应用层也堪称国内最丰富,既有自研通义大模型,也囊括了最全的模型和开放生态。 5月21日,阿里云终于宣布,高调跟进价格战:旗下九大模型降价。其中,对标GPT-4的Qwen-Long输入价格直降97%,仅需0.0005元/千tokens。阿里的正面硬刚,不仅意味着击穿了“豆包”定价;且降价的旗舰大模型覆盖的任务场景、目标客群也与字节高度统一。 毕竟对于内忧外患的阿里来说,大模型已被视为不容有失的、决定未来十年的船票。过去两年,阿里云虽然在市场份额、营收上仍位列行业第一,但在争夺政企云等节节受挫后,增速比起逐年仍以两位数抬升的华为云、天翼云等,已只余个位数。 阿里云迫切需要大模型为自己注入增长动力。近日,据“数智前线”消息,阿里云内部提出了一个非常激进的目标:三年之内,要拿下国内大模型云计算市场的90%。 另据阿里内部人士向「市界」透露,2023年阿里新任CEO吴泳铭上位后,在其投资背景和马云的支持下,阿里用“现金+算力”的模式,积极投资了月之暗面、Minimax、智谱AI、百川智能和零一万物,集齐“大模型五虎”。这些明星创企,一方面会作为客户在阿里云上训练大模型,一方面也透过阿里云,向外提供着服务。 相比起主打开放生态的阿里,更希望效仿“微软+OpenAI”,做高质量“垂直整合”的百度,在价格战面前的态度更为复杂。 在豆包宣布低价的当天,一位百度内部人士告诉「市界」,公司反应并不积极,更相信“客户真正关注的是效果,而非单纯低价”。5月16日的百度财报电话会上,百度智能云事业群总裁沈抖也指出:面对其他厂商的价格战,同样重要的是,评估不同模型在不同工作负载下的性能比,而不是仅仅关注表面价格。 但看到阿里下场后,百度还是用最快的速度跟上了。5月21日下午,百度宣布文心系列大模型中的ERNIE Speed(8K、128K)、ERNIE Lite(8K、128K)两款大模型的API将免费提供。 但不同于字节与阿里直接对旗舰级产品开放降价,百度免费的两款大模型,是于今年3月份发布的轻量级大模型,被动防御意味更浓。 阿里、百度表态后,隔日,腾讯云也作出了应对:官宣六款大模型API降费,其中混元-lite直接免费提供服务;混元-standard-256K的最新输入价格定为0.12元/千tokens,相当于降价87.5%;最高配置的万亿参数模型混元-pro的输入价格则从0.1元/千tokens降至0.03元/千tokens,降幅达70%。 相比之下,更擅长做产品和SaaS应用的腾讯,在AI技术层、客户层不及阿里、百度,跟随意味也更加明显。 在过去一年的“百模大战”中,腾讯更多侧重在混元大模型中,将自家的腾讯会议、企业微信、腾讯文档等产品装入,努力拓展集成了AI能力的几大产品客群。不过,也有市场声音认为,当生成式AI技术步入稳定期,开始应用层比拼后,握有产品线、流量、现金的腾讯,有能力以逸待劳,快速追上。 在腾讯云宣布降价同日,科大讯飞也挤上了降价的“末班车”,宣布Spark Lite-8K提供免费服务,Spark 3.5 Max-8K则降价至0.21-0.3元/万tokens区间。但不同于几家大厂,科大讯飞不涉及公有云服务,模型参数规模也较低。一位科大讯飞员工委婉地向「市界」表示了讯飞在降价潮中的焦虑:“跟友商们比,还有进步的空间。” 03、B端客户冷眼旁观 经过一个多星期的酝酿,这场如“618大促”般热闹的价格战,以大厂的悉数入场收官。但在高调的大厂和应用者之间,又快速拉开了火热与冷静的鲜明对比。 首先,不少开发者们发现,大厂所谓的“免费”有不少限制条件。例如,百度、讯飞等拿出的降价产品,均是偏轻量化的版本,只适用于推理量级小、场景简单的企业“尝鲜”使用。 此外,本轮降价更多聚焦于“API调用”场景——这也侧面说明,大模型行业仍处于早期阶段。 2023年,谭待便曾表示:云厂商按token消耗数量计费,无法真实反映不同业务、场景的客户价值,并非很理想的商业模式。 多位行业人士也对「市界」表示,在API层面的降价,更像“试用装”鱼饵——大厂希望借此达成的是“公有云+API”的闭环:B端用户被API吸引而来,结合使用深度,向公有云租用推理算力;未来在数据存储、高级功能、API调用次数、高峰期使用溢价等层面形成再付费。 因此,价格战也可被看作是大厂的一场“获客”游戏;而长期的角力关键,发展较成熟的云市场早已给出过答案。 近日,Lepton AI创始人、阿里巴巴原副总裁贾扬清的一则朋友圈留言在业界广为流传。他表示:“企业在使用AI的时候,并不是成本驱动的。不是因为API贵才没人用,而是因为企业首先得搞清楚怎么用起来产生业务价值,否则的话,再便宜也是浪费。” 因此,不少中小大模型创企也站在了大厂的另一极,选择理性观望,而不是跟随。 5月22日,在腾讯、科大讯飞同步宣布降价时,百川智能发布了最新一代基座大模型Baichuan 4,并推出了首款AI搜索助手“百小应”,没有跟随价格战。 创始人王小川在会后接受媒体采访时表示,价格战仅是大厂的游戏。“核心要看你的商业模式是什么。如果你是做to B服务的时候,降价最后卖的不是模型本身,卖的是整套云服务。” 零一万物创始人李开复对价格战的态度更为消极。他直言大模型价格战是双输打法,可以类比曾经的共享单车烧钱大战。“以后可能中国就是这么卷,大家宁可赔光通输也不让你赢,那我们就走外国市场。” 据零一万物API平台负责人蓝雨川透露:目前零一万物Yi-Large的API定价是20元对应百万tokens,大概是GPT-4 Turbo成本和定价的1/3。对此,李开复自信地表示:“我们的定价非常合理。” 04、能引爆商业化元年吗 不论创企是否选择、或有能力跟随价格战,当行业被价格燃起热火后,接下来比拼算力储备、补贴力度、技术实力的淘汰竞赛势必会加速展开。留给各家建立护城河的时间,也将急剧压缩。 对于迫切希望打开to B市场入口的大厂而言,彼此之间图穷匕见,争夺API用户的“贴身肉搏”已经率先展开。 一家小B端客户告诉「市界」,在5月15日发布会举办之前,火山方面已多番与其进行接触,希望其能够从原有的API服务商上转用豆包。另一位开发者则表示,近日当他在豆包大模型官网页面注册了登录账号后,短短一小时内就接到了火山引擎方面的沟通电话,“挂断后第二天他们还接着打”。 每一个分散的需求,开始被巨头case by case般地注意和争夺——虽然大厂力推的价格杀器,未必是客户选择的首要因素。 一位企业用户告诉「市界」,自己一直在被火山“密集轰炸”,“但最后是否会接入豆包,要试用一下看看效果再做决定”。 留学文书GPT创业者小鱼则透露,在创业之初探索MVP(最小化的可行性产品)阶段,小鱼试用了国内的大部分大模型产品后,最终选择接入的API并不最具经济性。 他谈道:“当时我注意到百度文心的API定价最为便宜,但它的效果尤其是英语效果实在是无法满足我们的需要,所以也被排除了。” 价格之外,各家云大厂能够提供的服务附加值,也是用户更为看重的方向。例如,使用豆包是否会获得抖音的流量扶持;使用通义千问,阿里的生态能否提供整体支持,将是达成更深层绑定的关键因素。 同时,经过一年的大模型基础设施铺陈,AI的爆款级应用还有多远,也再度被广泛期待。 毕竟在移动互联网早期,也曾有移动App付费还是免费的商业化困局。但这些疑问,很快被微信、支付宝、美团、滴滴的一场场免费商战进行了颠覆式解答。而随着现象级的AI应用产生,能否卷起新的商业世界,才是巨头们不惜成本投入的核心原因。 近日,猎户星空创始人傅盛在回应价格战问题谈到:大降价宣告了大模型创业公司,必须寻找新的商业模式。而寻找超级应用的重要性,也再升了一级。
注意!去美国读AI的留学生,恐将面临空前的限制!
对 于留学生来说,这几年时下火热的AI领域,在美国是创业、就业的热门赛道。 不过,情况可能会发生变化。 当地时间5月8日,美国众议院一个由两党议员组成的小组公开了一项法案文件。 如果法案通过,会让拜登政府更容易对AI技术实行出口管制。 截图自法案文件 法案名为 “增强关键出口海外限制国家框架法案” ( Enhancing National Frameworks for Overseas Restriction of Critical Exports Act,简称“ENFORCE法案”) ,旨在限制美国人工智能、人工智能系统等出口,防止外国竞争对手使用美国的AI技术。 按照法案对AI系统的定义,它包括AI相关的所有软件和硬件,包括人工智能模型权重、与人工智能实现相关的任何数值参数。 ENFORCE法案由美国众议员共和党议员迈克尔·麦考尔 (Michael McCaul) 、约翰·莫伦纳尔 (John Molenaar) 、马克思·怀斯 (Max Wise) 和民主党议员拉贾·克里希纳莫西 (Raja Krishnamoorthi) 提出。 迈克尔·麦考尔在美国众议院外交事务委员会上演讲。图源自网络 事实上, 该法案一旦通过,不仅对技术贸易会产生影响,甚至有可能会影响持有H1b的中国留学生和求职者! 法案文件部分截图 按照ENFORCE法案的条款,此前在半导体等相关行业工作需要的 “出口管制许可证(export control license)”的适用范围或许会被扩大,AI/ML(机器学习)领域持有H1b的中国员工可能会需要申请这份许可。 对于持有H1b的员工来说,能否拿到许可,可能要看所在公司的意愿。 法案提出后,还没有下一步进展。 具体对AI/ML领域的留学和就业将产生什么影响,尚不清楚。 02 如今大热的AI领域,一直是留学生就业、创业的“香饽饽”。 美国斯坦福大学教授、美国工程院院士、被誉为“AI教母”的 李飞飞 ,建立了包含1500万张图片的图像识别数据库 ImageNet ,它的诞生对人工智能的发展有着深远的影响。 只要将它运用在计算机上,可以让计算机直接辨认出物品和人了。 作为ImageNet的创始人,她决定将开放数据库,免费提供给全世界的科研团队用于计算机图片识别训练。 这也引发了人工智能井喷式发展,让AI从实验室走到了大众的视野。 李飞飞将大量的时间和心血投放在人工智能领域,她在权威计算机期刊上发表了超过100篇论文,引用量更是高达44773次。 2020年,她的团队历时8年打造的关于利用人工智能传感器和AI算法帮助改善患者和临床医生医疗服务的论文刊登在Nature,并且探索监控病人身体状况的AI家用系统等。 去年年底, AI视频生成器Pika 引发大量关注。 Pika 1.0能根据文字图片生成视频,不仅速度快(3秒的视频用时半分钟左右),其画面流畅度、视觉效果、清晰度、转场效果都令人叹为观止。 更让人惊讶的是,该工具可以支持对视频实时进行编辑和修改! Pika背后的公司, 创始人是2位斯坦福的计算机博士: CEO Demi Guo(郭文景)(左) 和 CTO Chenlin Meng(右) 。 这家初创公司在短时间内通过三轮融资筹集了5500万美元。 Pika的投资人阵容堪称群英荟萃,大量AI领域知名企业和相关人士都参与到了融资中: Quora创始人Adam D'Angelo、OpenAI创始成员Karpathy、Perplexity CEO、前Github CEO Nat Friedman等等。 据报道,ChatGPT团队核心成员只有87人,其中就有9人是华人。 吴恩达 (Andrew Ng) 是 Landing AI 的创始人兼首席执行官、deeplearning.ai 的创始人、Coursera 的联合主席兼联合创始人,还是斯坦福大学的兼职教授。 图源自网络 他担任联合创始人的 Coursera 与一些世界顶尖大学合作提供高质量的在线课程,是世界上最大的 MOOC 平台 (Massive Open Online Course,大规模在线开放课程) 。 越来越多华人科研工作者在AI领域取得成就,在创业领域也有不少建树。 他们的成功,鼓励越来越多的留学生奔向AI相关专业,想要在科技发展的浪潮中有所成就。 不过,正在走流程的ENFORCE法案,毫无疑问为相关领域的留学生就业,增添了更多不确定因素。 那么,对于留学生来说,还要进入AI专业吗? 答案是肯定的。 03 虽然AI行业被“卡脖子”的风险增加,但长远来看,对于想要留在美国就业的留学生来说,AI行业依然是最优选之一。 可能会有人问:北美的科技大厂不是在纷纷裁员吗? 危机中也蕴藏着新的机遇。 因为,造成这一变化的,正是AI。 谷歌在今年年初裁员超过1000人,涉及硬件、广告销售、搜索、购物、地图、核心工程等,几乎每个团队都有数百人被解雇。 据谷歌官方报告称,2023年第四季度公司营收利润达207亿美元,较上年增长52%,但员工人数却减少了4%。 之所以削减人力成本,是希望在AI领域加大布局和投入。 谷歌旗下AI研究部门DeepMind的首席执行官Demis Hassabis,在近日举办的TED大会上指出,谷歌将在AI上投入超1000亿美元。 可以看出,美国科技行业正呈现“冰火两重天”的局面:一面持续裁员,另一面疯狂揽招AI人才。 根据计算机技术行业联合会的数据, 去年美国有18万个与AI相关职位在招聘,包括软件开发、半导体工程和云计算领域等 。 今年AI相关职位的空缺仍在进一步扩大。 美国马里兰大学AI工作追踪器监测, 今年1月,全美发布了10404个新的AI相关职位,相比ChatGPT刚刚发布时的2022年12月增加了42% 。 薪资方面也非常可观。 Compresive.io数据显示,从 去年第三季度到第四季度,AI工程师的工资上涨了12%。高级AI工程师的平均工资超过19万美元 。 图源自motiversity.com 而根据Indeed的数据,从事AI工作的数据科学家只需要不到一年的工作经验,就有望获得至少10万美元的年薪。 归根究底,找工作既要看行业前景、收入情况,也要看自身的专长和兴趣。 在AI行业形势大好的情况下,也要认真考量个人情况和未来趋势,再做决定。
谷歌CEO皮查伊:未来几年的AI可能会给人一种“具备意识”的假象
IT之家 5 月 27 日消息,谷歌 CEO 桑达尔・皮查伊近日接受 YouTube 科技创作者 Hayls World 采访,讨论了当下正如火如荼的 AI 革命的方方面面,并透露了谷歌对 AI 的愿景。 IT之家汇总部分问答如下: 在马斯克提出 AI 将使大部分工作变得“可有可无”不久后,皮查伊也表达了类似的观点,强调了 AI 的普遍影响。 采访一开始,主持人便问皮查伊“为什么要使用谷歌的 AI”,皮查伊回答说,AI 将为我们所做的一切带来极大影响。“使用 AI 的原因有很多种,它会让你的体验变得更好,它会帮你总结一些内容,帮你节省时间,你还可以和 AI 讨论如何做得更好。” 当被问及“谷歌 Gemini 与 ChatGPT 等竞品之间存在哪些优势”时,皮查伊表示,AI 与谷歌搜索或其他产品的整合是重要优势之一。“例如,它可以汇总 Gmail 中的电子邮件,你可以轻松地发送电子邮件。它与包括 YouTube 在内的其他谷歌产品整合得非常好。它是多模态的,随着时间的推移,你将能够使用语音操作 AI。” 主持人问皮查伊,“包括 Gemini 在内的一些 AI,感觉有时几乎没有意识。你认为还需要很长时间才会有某种形式的 AI 意识吗?”皮查伊则表示,“在未来几年里,我们会有 AI 具备了意识的假象,你可能无法区分。但是,这与 AI 真正具备意识是不同的,这是一个非常深刻的哲学话题。” 皮查伊设想了一个世界:AI 将成为人们日常工作中的得力助手。“就像在 Google Docs 里面纠正你的拼写和语法错误一样,AI 将为你所做的几乎所有事情提供帮助。比如,你可能正在准备面试,然后可以和 AI 讨论如何做得更好,甚至不会让人觉得奇怪。”
欧盟AI法案即将生效,杨立昆等AI科学家表示反对
在欧盟放行了全球首部人工智能法案后,有科技界领袖对此表达担忧,认为人工智能的风险被夸大了。 在上周举行的巴黎VivaTech大会期间,科技巨头Meta人工智能负责人杨立昆(Yann LeCun)公开表示,欧盟新法案面临的一个“大问题”是“人工智能的研究和开发是否应该受到监管”。 AGI何时实现, 业内分歧较大 杨立昆表示,欧盟人工智能法案和其他各个地方都有规范研究和开发的条款,但他认为这不是一个好主意,理由是他并不认为人工智能会很快超越人类智能。 “坦率地说,我不相信AI有任何与人接近的地方。”杨立昆表示,“我认为它目前没有那么危险。”不过他承认,未来人工智能系统可能会变得更加智能,届时需要对它们的设计采取适当的保障措施。 百度CEO李彦宏也在VivaTech期间表示,AGI的实现还需要超过十年的时间。他表示:“我们希望人工智能像人类一样聪明,但当今最强大的模型远未达到这一程度。” 李彦宏呼吁加快人工智能的发展步伐。“我担心的是人工智能技术进步得不够快。每个人都对过去几年技术发展的速度感到震惊。但对我来说还是不够快。”他表示。 以特斯拉CEO马斯克为代表的科技人士强调人工智能的风险,马斯克在X Space的访谈中预测,到明年或2026年,人工智能的智慧可能会超过世界上最聪明的人类,也就是通用人工智能(AGI)的实现。 ChatGPT的开发商OpenAI的CEO奥尔特曼(Sam Altman)在今年早些时候预测,AGI可能会在“相当近的未来”开发出来。 对于人工智能安全性风险的分歧在OpenAI的“内斗”中已经暴露出来。OpenAI在宣布向公众免费提供迄今为止最强大的人工智能模型GPT-4o后,该公司前首席科学家苏茨克维尔(Ilya Sutskever)宣布辞职,“超级对齐”团队解散。 这也引发了谁来为AI负责的讨论。现任清华大学国强教授、智能产业研究院首席研究员聂再清对第一财经记者表示:“Ilya对大模型技术的理解非常深刻,他的离职和对齐团队的解散短期内对OpenAI大模型技术的发展和安全可控可能会有一些影响。OpenAI应该还会继续大力投入到安全和对齐相关的工作上,确保大模型长期安全可控,在各种边界情况下都表现良好。” 他认为,作为大的科技企业,可以通过团队的协同,在“对齐”这个方向上做更好的长期规划和资源共享及调配。 创新与监管如何平衡 欧盟一直走在人工智能监管的最前沿。上周,欧盟委员会批准了《人工智能法案》,这项法案是全球首创,将为人工智能监管制定全球标准。 该立法遵循“基于风险”的方法,旨在促进私人和公共参与者在欧盟市场上开发和采用安全、值得信赖的人工智能系统。法案规定,提供公共服务的实体部署高风险人工智能系统之前,需要评估其基本权利影响。这也意味着AI对社会造成伤害的风险越高,监管的规则就越严格。 该法案也涉及通用人工智能大模型(GPAI)的使用。根据法案,不构成系统性风险的GPAI模型将受到一些有限的要求,例如透明度方面的要求,但那些存在系统性风险的模型将必须遵守更严格的规则。 一些企业和行业组织已经明确对欧盟的AI法案提出反对,认为这不利于欧洲打造人工智能高地。欧洲科技行业组织Digital Europe此前在一份声明中称:“这意味着我们需要投入更多来研究对抗人工智能使用风险的方法,而不是投入技术本身,新的监管规则将要求公司投入大量资源来遵守,把资源花在律师身上,而不是雇佣人工智能工程师。” Meta欧盟事务主管Marco Pancini也表示:“最重要的是,我们不应该忽视人工智能在促进欧洲创新和促进竞争方面的巨大潜力,而开放是关键。” 亚马逊首席技术官沃纳·沃格尔斯(Werner Vogels)也在VivaTech期间表达了对人工智能监管可能会扼杀某些领域创新的担忧。 他表示,在考虑风险时,监管机构应该考虑将新技术应用于医疗保健和金融服务。“我认为AI在很多领域应用的风险很小,我们应该让创新在这些领域发挥作用。在其他领域,AI犯的错误可能对人们的生活产生更大的影响,应该针对这些特定领域进行特别的风险管理。”沃格尔斯表示。 他还强调,亚马逊欢迎监管,并与监管机构的总体目标保持一致,但警告欧盟不要过度监管人工智能。 对此,欧盟委员会表示,该法案的推出目标是“刺激欧洲人工智能的投资和创新”。“这项具有里程碑意义的法案是世界上第一部AI法案,它解决了全球技术挑战,也为我们的社会和经济创造了机会。通过人工智能法案,欧洲强调在处理新技术时信任、透明度和问责制的重要性,同时确保这种快速变化的技术能够蓬勃发展并促进欧洲创新。”欧盟在一份声明中称。 欧盟表示,该立法法案经欧洲议会通过后,将在未来几天内在欧盟官方公报上发布,并在发布后二十天生效,新法案将在生效两年后对企业正式产生影响。不遵守规则的公司将面临3500万欧元或等同于全球收入7%的罚款(二选一)。

版权所有 (C) 广州智会云科技发展有限公司 粤ICP备20006386号

免责声明:本网站部分内容由用户自行上传,如权利人发现存在误传其作品情形,请及时与本站联系。